- Nazwa przedmiotu:
- Międzywydziałowy projekt interdyscyplinarny BIM - mpiBIM
- Koordynator przedmiotu:
- dr inż. Piotr Bartkiewicz
- Status przedmiotu:
- Fakultatywny dowolnego wyboru
- Poziom kształcenia:
- Studia I stopnia
- Program:
- Inżynieria Środowiska
- Grupa przedmiotów:
- Obieralna
- Kod przedmiotu:
- 1110-ISOOO-ISP-7411
- Semestr nominalny:
- 7 / rok ak. 2022/2023
- Liczba punktów ECTS:
- 12
- Liczba godzin pracy studenta związanych z osiągnięciem efektów uczenia się:
- Wykład: 15 h
Ćwiczenia projektowe: 90 h
Zapoznanie się ze wskazaną literaturą 15 h
Konsultacje w zespołach międzywydziałowych: 45 h
Praca własna w zespołach 45 h
Przygotowanie koncepcji rozwiązania 30 h
Modelowanie 30 h
Przygotowanie do zaliczenia wykładów i obecność na zaliczeniu 5 h
Razem: 275 h
- Liczba punktów ECTS na zajęciach wymagających bezpośredniego udziału nauczycieli akademickich:
- 5
- Język prowadzenia zajęć:
- polski
- Liczba punktów ECTS, którą student uzyskuje w ramach zajęć o charakterze praktycznym:
- 7
- Formy zajęć i ich wymiar w semestrze:
-
- Wykład15h
- Ćwiczenia0h
- Laboratorium0h
- Projekt90h
- Lekcje komputerowe0h
- Wymagania wstępne:
- Podstawy informatyki
- Limit liczby studentów:
- brak
- Cel przedmiotu:
- Zapoznanie studentów z zagadnieniami projektowania zintegrowanego, współpracy między-branżowej oraz wykorzystania idei BIM w praktyce projektowej. W ramach przedmiotu studenci pozyskują wiedzę na temat międzybranżowego projektowania zintegrowanego. W ramach przedmiotu na 5 Wydziałach PW (Architektury, Inżynierii Lądowej, Instalacji Budowlanych, Hydrotechniki i Inżynierii Środowiska, Elektrycznym oraz Zarządzania) tworzone są kilkunastoosobowe grupy reprezentujące daną branżę. W ramach projektu studenci połączeni w międzywydziałowe zespoły projektowe tworzą koncepcję projektową zadanych projektów. Studenci kierunku Inżynieria Środowiska na bazie poznanych zasad wdrażają je w projekcie integrującym branże instalacyjne (wentylacja, klimatyzacja, ogrzewnictwo, ciepła i zimna woda, kanalizacja). Wstępne propozycje rozwiązań instalacyjnych są następnie integrowane z branżą architektoniczną, konstrukcyjną i elektryczną budynku w procesie projektowania zintegrowanego. W części praktycznej studenci wykonują w grupach projektowych koncepcję rozwiązań systemów budynkowych wykorzystując narzędzia BIM.
- Treści kształcenia:
- Wykłady:
Wprowadzenie do projektu – założenia, wymagania, zasady funkcjonowania zespołów – praca zespołowa. Podstawy procesu inwestycyjnego opartego o projektowanie zintegrowane. BIM w architekturze. BIM w konstrukcji. BIM w instalacjach sanitarnych. BIM w instalacjach elektrycznych. Zasady zarządzania projektem, zasady zarządzania pracą zespołową, metody oceny efektywności pracy projektowej. Zasady wdrożenia BIM w zespole międzybranżowym, BEP – BIM Execution Plan, LOD – Poziom dokładności dokumentacji BIM
Ćwiczenia projektowe:
Wprowadzenie do projektu – założenia, wymagania, zasady funkcjonowania zespołów – praca zespołowa. Opracowanie międzybranżowej koncepcji wybranego budynku na podstawie wytycznych inwestora. Opracowanie koncepcji wybranego budynku w środowisku BIM, wraz z koordynacją międzybranżową. Opracowanie prezentacji podsumowującej i prezentacja otrzymanych wyników projektowania zintegrowanego. Opracowanie inżynierskie wybranego systemu instalacyjnego
- Metody oceny:
- Ocena zintegrowana stanowi średnią ważoną z zaliczenia wykładów i zajęć projektowych.
- Egzamin:
- nie
- Literatura:
- Ponieważ prezentowany przedmiot przybliża niezwykle dynamicznie rozwijającą się dziedzinę podstawową literaturą jest zestaw materiałów przygotowanych przez prowadzących jako odnośniki do aktualnych pozycji literaturowych i stron internetowych umieszczony na stronie internetowej przedmiotu.
Literatura podstawowa:
J. Bratton, Making the Transition from CAD to BIM, The benefits of switching from CAD to Building Information Modeling (BIM) for electrical engineers and designers designing in today's virtual construction world, Mar. 1, 2009, Electrical Construction and Maintenance.
Tomana, Od CAD do BIM, Inżynier budownictwa, 12.2015.
Tomana, 2015, BIM - Innowacyjna technologia w budownictwie. Podstawy. Standardy. Narzędzia. Kraków: PWB MEDIA.
H. Markiewicz, 2009, Instalacje elektryczne. Wyd. 8, Warszawa: WNT.
Lejdy, 2009, Instalacje elektryczne w obiektach budowlanych. Wyd. 3, Warszawa: WNT.
Eastman, P. Teicholz, R. Sacks, and K. Liston, 2008, BIM Handbook: A Guide to Building Information Modeling for Owner, Managers, Designers, Engineers, and Contractors. J New Jersey: John Wiley and Sons, Inc.
"Little book of BIM" edition 2021, BSI France.
J. Słyk, 2015, Model informacji inżynierskich, BIM, Warszawa: Centrum Studiów Zaawansowanych PW.
M. Trocki, 2013, Nowoczesne zarządzanie projektami. Warszawa: PWE.
J. Chudzicki J., S. Sosnowski, 2011, Instalacje wodociągowe – projektowanie, wykonanie, eksploatacja. Warszawa: Seidel-Przywecki Sp. z o.o.
J. Chudzicki, S. Sosnowski, 2011, Instalacje kanalizacyjne – projektowanie, wykonanie, eksploatacja. Warszawa: Seidel-Przywecki Sp. z o.o.
Neufert, 2011, Podręcznik projektowania architektoniczno-budowlanego. Warszawa: Arkady.
H. Recknagel, E. Sprenger, E. Schramek, 2009, Kompendium wiedzy OGRZEWNICTWO, KLIMATYZACJA, CIEPŁA WODA, CHŁODNICTWO 2008/2009, Warszawa: Omni-Scala 2008.
Literatura uzupełniająca:
M. Baldwin, 2019, The BIM-Manager: A Practical Guide for BIM Project Management.
R.K. Wysocki, 2018, Efektywne zarządzanie projektami. Warszawa: Onepress.
D.K. Smith and M. Tardiff, 2009, Building Information Modeling: A Strategic Implementation Guide for Architects, Engineers, Constructors and Real Estate Asset Managers, New Jersey: John Wiley and Sons, Inc.
E. Wing, 2014, Autodesk Revit Architecture. No Experience Required, SYBEX.
J. Sowa (red.), 2017, Budynki o niemal zerowym zużyciu energii. Warszawa: Oficyna Wydawnicza PW.
B. Lipska, Z. Trzeciakiewicz, 2018, Projektowanie wentylacji i klimatyzacji. Zagadnienia zaawansowane, Wydawnictwo Politechniki Śląskiej.
H. J. Ullrich, 2001, Technika klimatyzacyjna – Poradnik, MASTA.
K. Gutkowski, D. Butrymowicz, K. Śmierciew, J. Gagan, 2022, Chłodnictwo i klimatyzacja, Warszawa: Wydawnictwo Naukowe PWN.
M. Danielak, 2017, Alternatywne systemy chłodzenia i klimatyzacji. Przewodnik, Warszawa: Grupa Medium.
M. Rubik, 2020, Chłodnictwo i pompy ciepła, Warszawa: Grupa Medium.
Romanowski, 2019, Systemy regulacji automatycznej w instalacjach wentylacyjnych i klimatyzacyjnych, Warszawa: Grupa Medium.
H. G. Sabiniak, M. Pietras, 2016, Projektowanie klimatyzacji w obiektach basenowych, Łódź: Wydawnictwa Politechniki Łódzkiej.
AHRAE Handbooks.
REHVA Guidebooks.
- Witryna www przedmiotu:
- https://mpi.bim.pw.edu.pl
- Uwagi:
- -
Efekty uczenia się
Profil ogólnoakademicki - wiedza
- Charakterystyka W01
- Posiada szczegółową wiedzę z mechaniki i dynamiki płynów w zakresie prze-pływów w sieciach i instalacjach ogrzewczych, wentylacyjnych, klimatyza-cyjnych, wodociągowych i kanalizacyjnych.
Weryfikacja: Zaliczenie
Powiązane charakterystyki kierunkowe:
IS_W10
Powiązane charakterystyki obszarowe:
P6U_W, I.P6S_WG.o
- Charakterystyka W02
- Posiada szczegółową wiedzę z zakresu projektowania, budowy, modernizacji i eksploatacji sieci i instalacji ogrzewczych, wentylacyjnych, klimatyza-cyjnych, wodociągowych i kanalizacyjnych.
Weryfikacja: Zaliczenie
Powiązane charakterystyki kierunkowe:
IS_W12
Powiązane charakterystyki obszarowe:
P6U_W, I.P6S_WG.o, III.P7S_WG
- Charakterystyka W03
- Posiada szczegółową wiedzę z zakresu możliwości korzystania z pakietów inżynierskiego oprogramowania przy doborze i eksploatacji urządzeń techno-logicznych i regulacyjnych w sieciach i instalacjach ogrzewczych, wentyla-cyjnych, klimatyzacyjnych, wodociągowych i kanalizacyjnych.
Weryfikacja: Zaliczenie
Powiązane charakterystyki kierunkowe:
IS_W13
Powiązane charakterystyki obszarowe:
P6U_W, I.P6S_WG.o
- Charakterystyka W04
- Posiada podstawową wiedzę o cyklu życia produktów, obiektów, elementów instalacji i urządzeń sanitarnych, a także w zakresie wpływu regulacji automatycznej na jakość i ekonomikę procesów w sieciach i instalacjach ogrzewczych, wentylacyjnych, klimatyzacyjnych, wodociągowych i kanalizacyjnych i zna zasady zrównoważonego rozwoju.
Weryfikacja: Zaliczenie
Powiązane charakterystyki kierunkowe:
IS_W14
Powiązane charakterystyki obszarowe:
III.P6S_WG, P6U_W, I.P6S_WG.o
- Charakterystyka W05
- Posiada podstawową wiedzę o aktualnych kierunkach rozwoju i modernizacji w zakresie systemów ciepłowniczych, systemów ogrzewania, systemów klimatyzacji, systemów zaopatrzenia w wodę, odprowadzania ścieków.
Weryfikacja: Zaliczenie
Powiązane charakterystyki kierunkowe:
IS_W15
Powiązane charakterystyki obszarowe:
P6U_W, I.P6S_WG.o
- Charakterystyka W06
- Posiada podstawową wiedzę z zakresu właściwości fizycznych, mechanicz-nych i eksploatacyjnych materiałów stosowanych w obiektach budowlanych, urządzeniach, sieciach i instalacjach w sieciach i instalacjach ogrzewczych, wentylacyjnych, klimatyzacyjnych, wodociągowych i kanalizacyjnych.
Weryfikacja: Zaliczenie
Powiązane charakterystyki kierunkowe:
IS_W19
Powiązane charakterystyki obszarowe:
P6U_W, I.P6S_WG.o
Profil ogólnoakademicki - umiejętności
- Charakterystyka U01
- Potrafi modelować proste układy sieci cieplnych, centralnego ogrzewania, instalacji wentylacji i klimatyzacji, urządzeń i sieci i instalacji wodociągo-wych i kanalizacyjnych, potrafi wykorzystać właściwości statyczne i dyna-miczne podstawowych procesów z zakresu ciepłownictwa, ogrzewnictwa, wentylacji, klimatyzacji wodociągów i kanalizacji do opracowania odpowiednich struktur układów regulacji.
Weryfikacja: Projekty zespołowe, prezentacje indywidualne i zespołowe
Powiązane charakterystyki kierunkowe:
IS_U04
Powiązane charakterystyki obszarowe:
P6U_U, I.P6S_UW.o, III.P6S_UW.o
- Charakterystyka U02
- Potrafi dobrać typowe urządzenia stosowane w ciepłownictwie, ogrzewnic-twie, klimatyzacji lub w systemach wodociągowych i kanalizacyjnych.
Weryfikacja: Projekty zespołowe, prezentacje indywidualne i zespołowe
Powiązane charakterystyki kierunkowe:
IS_U05
Powiązane charakterystyki obszarowe:
P6U_U, I.P6S_UW.o, III.P6S_UW.o
- Charakterystyka U03
- Potrafi zaprojektować instalacje lub układy automatycznej regulacji w zakresie: kształtowania wymaganej jakości powietrza wewnętrznego, lub uzdatniania wody i oczyszczania ścieków stosując właściwe narzędzia do wspomagania projektowania lub grafiki inżynierskiej.
Weryfikacja: Projekty zespołowe, prezentacje indywidualne i zespołowe
Powiązane charakterystyki kierunkowe:
IS_U07
Powiązane charakterystyki obszarowe:
P6U_U, I.P6S_UW.o, III.P6S_UW.o
- Charakterystyka U04
- Potrafi określić wartości skumulowanych wskaźników zużycia energii i zaso-bów naturalnych lub emisji zanieczyszczeń (zna zasady inżynierii zrównowa-żonego rozwoju), w ciepłownictwie, ogrzewnictwie, klimatyzacji, lub wskaź-ników zapotrzebowania i zużycia wody oraz ilości ścieków.
Weryfikacja: Projekty zespołowe, prezentacje indywidualne i zespołowe
Powiązane charakterystyki kierunkowe:
IS_U09
Powiązane charakterystyki obszarowe:
P6U_U, I.P6S_UW.o, III.P6S_UW.o
- Charakterystyka U05
- Potrafi prowadzić metodami matematycznymi analizy porównawcze rożnych rozwiązań technologicznych z zakresu ciepłownictwa, ogrzewnictwa, klimatyzacji, lub zaopatrzenia w wodę i odprowadzania ścieków.
Weryfikacja: Projekty zespołowe, prezentacje indywidualne i zespołowe
Powiązane charakterystyki kierunkowe:
IS_U11
Powiązane charakterystyki obszarowe:
P6U_U, I.P6S_UW.o, III.P6S_UW.o
- Charakterystyka U06
- Potrafi opracować i zaprezentować w odpowiedniej formie projekt, system lub proces typowy dla ciepłownictwa, lub ogrzewnictwa, lub klimatyzacji lub zaopatrzenia w wodę i odprowadzania ścieków w języku polskim i języku obcym. Potrafi czytać prasę fachową (także w języku obcym) i prowadzić proces samokształcenia się.
Weryfikacja: Projekty zespołowe, prezentacje indywidualne i zespołowe
Powiązane charakterystyki kierunkowe:
IS_U13, IS_U15
Powiązane charakterystyki obszarowe:
P6U_U, I.P6S_UW.o, III.P6S_UW.o
- Charakterystyka U07
- Potrafi projektować, realizować i eksploatować elementy systemu ogrzewcze-go, lub klimatyzacyjnego, lub zaopatrzenia w wodę i odprowadzania ścieków.
Weryfikacja: Projekty zespołowe, prezentacje indywidualne i zespołowe
Powiązane charakterystyki kierunkowe:
IS_U18
Powiązane charakterystyki obszarowe:
III.P6S_UW.o, P6U_U, I.P6S_UW.o
Profil ogólnoakademicki - kompetencje społeczne
- Charakterystyka K01
- Rozumie potrzebę ciągłego dokształcania sie i podnoszenia kompetencji zawodowych i osobistych
Weryfikacja: Projekty zespołowe, prezentacje indywidualne i zespołowe
Powiązane charakterystyki kierunkowe:
IS_K01
Powiązane charakterystyki obszarowe:
P6U_K, I.P6S_KK
- Charakterystyka K02
- Ma świadomość wagi pozatechnicznych aspektów i skutków działalności inżynierskiej, w tym jej wpływu na środowisko i związanej z tym odpowie-dzialności za podejmowane decyzje i realizowane zadania indywidualnie i zespołowo
Weryfikacja: Projekty zespołowe, prezentacje indywidualne i zespołowe
Powiązane charakterystyki kierunkowe:
IS_K02, IS_K04
Powiązane charakterystyki obszarowe:
P6U_K, I.P6S_KR, I.P6S_KK
- Charakterystyka K03
- Ma świadomość konieczności działania w sposób profesjonalny i przestrzegania zasad etyki zawodowej. Potrafi przekazać informacje techniczne w sposób powszechnie zrozumiały, posiada umiejętność przygotowania wystąpień ustnych, w języku polskim i języku obcym.
Weryfikacja: Projekty zespołowe, prezentacje indywidualne i zespołowe
Powiązane charakterystyki kierunkowe:
IS_K03, IS_K06
Powiązane charakterystyki obszarowe:
P6U_K, I.P6S_KR, I.P6S_KO