- Nazwa przedmiotu:
- Teoria algorytmów i obliczeń
- Koordynator przedmiotu:
- Prof. dr hab. inż. Władysław Homenda, Dr Michał Tuczyński
- Status przedmiotu:
- Obowiązkowy
- Poziom kształcenia:
- Studia I stopnia
- Program:
- Informatyka i Systemy Informacyjne
- Grupa przedmiotów:
- Wspólne
- Kod przedmiotu:
- 1120-IN000-ISP-0474
- Semestr nominalny:
- 7 / rok ak. 2022/2023
- Liczba punktów ECTS:
- 4
- Liczba godzin pracy studenta związanych z osiągnięciem efektów uczenia się:
- 1. godziny kontaktowe - 60 h; w tym
a) obecność na wykładach – 30 h
b) obecność na ćwiczeniach – 15 h
c) obecność na laboratoriach – 15 h
2. praca własna studenta – 60 h, w tym
a) zapoznanie z literaturą – 10 h
b) przygotowanie do ćwiczeń – 10 h
c) przygotowanie do sprawdzianów pisemnych – 10 h
d) przygotowanie problemów laboratoryjnych –30 h
Razem 120 h, co odpowiada 4 pkt. ECTS
- Liczba punktów ECTS na zajęciach wymagających bezpośredniego udziału nauczycieli akademickich:
- 1. obecność na wykładach – 30 h
2. obecność na ćwiczeniach – 15 h
3. obecność na laboratoriach – 15 h
Razem 60 h, co odpowiada 2 pkt. ECTS
- Język prowadzenia zajęć:
- polski
- Liczba punktów ECTS, którą student uzyskuje w ramach zajęć o charakterze praktycznym:
- 1. obecność na laboratoriach – 15 h
2. przygotowanie do sprawdzianów pisemnych – 10 h
3. przygotowanie problemów laboratoryjnych – 30 h
Razem 55 h, co odpowiada 2 pkt. ECTS
- Formy zajęć i ich wymiar w semestrze:
-
- Wykład30h
- Ćwiczenia15h
- Laboratorium15h
- Projekt0h
- Lekcje komputerowe0h
- Wymagania wstępne:
- Teoria automatów i języków formalnych
Algorytmy i struktury danych
- Limit liczby studentów:
- Ćwiczenia – 30 os/grupa Laboratoria (ćwiczenia komputerowe) – 15-24 os/grupa
- Cel przedmiotu:
- Celem przedmiotu jest przekazanie wiedzy z teorii algorytmów, złożoności, rozstrzygalności, charakteryzacji klas problemów. Po ukończeniu kursu studenci powinni posiadać wiedzę i umiejętności sformułowane w tabeli efektów uczenia się.
- Treści kształcenia:
- Wykład: prowadzony metodą tradycyjną, treści omawiane w sali i zapisywane kredą na tablicy bez korzystania z nowoczesnych technik typu prezentacje. Taki przekaz umożliwia efektywne opanowanie przekazywanych treści.
Ćwiczenia: podobnie jak wykład prowadzone są w sposób tradycyjny. Na ćwiczeniach uzupełniane są pomniejsze treści wykładu, rozwiązywane są problemy praktyczne dotyczące treści wykładu, a także powtarzane są trudniejsze kwestie z wykładu, np. powtarzane są trudne dowody fundamentalnych twierdzeń. Na ćwiczeniach zagadnienia są rozwiązywane na tablicy głównie przez studentów z pomocą prowadzącego.
Laboratorium: polega na opracowaniu i oprogramowaniu algorytmu (dokładnego lub aproksymacyjnego) rozwiązania nietrywialnych problemów teorii złożoności oraz przygotowania raportu. Studenci pracują w zespołach 2-3-4 osobowych, wyznaczane są trzy terminy wykonania zadania laboratoryjnego, w tym termin złożenia pełnego projektu (programu i dokumentacji).
- Metody oceny:
- Do zaliczenia przedmiotu wymagane jest:
- zaliczenie części teoretycznej i praktycznej w bieżącym semestrze,
- zaliczenie części teoretycznej na podstawie dwóch kolokwiów,
- zaliczenie części laboratoryjnej na podstawie rozwiązania przydzielonego problemu w czasie semestru; wymagana jest obecność na zajęciach laboratoryjnych w celu kontroli realizacji zdania laboratoryjnego,
- ocena końcowa jest średnią z części teoretycznej i praktycznej.
- Egzamin:
- nie
- Literatura:
- 1. J.E. Hopcroft, J.D. Ullman, Wprowadzenie do teorii automatów, języków i obliczeń, WNT.
2. A.V. Aho, J.E. Hopcroft, J.D. Ullman, The design and analysis of computer algorithms, Addison-Wesley Publishing Company.
3. W. Homenda, Elementy lingwistyki matematycznej i teorii automatów, WPW.
4. P.B. Bovet, P. Crescenzi, Introduction to the theory of complexity, Prentice Hall.
5. M.B. Moret, The theory of computation, Addison-Wesley Publishing Company.
6. C.H. Papadimitriou, Złożoność obliczeniowa, WNT, Warszawa.
7. A. Yasuhara, Recursive function theory and logic, Academic Press.
8. F. Hennie, Introduction to computability, Addison-Wesley.
- Witryna www przedmiotu:
- Uwagi:
Efekty uczenia się
Profil ogólnoakademicki - wiedza
- Charakterystyka W01
- Zna teoretyczne modele obliczeniowe: maszyny Turinga, gramatyki nieograniczone, maszyny RAM, funkcje rekurencyjne, jest świadomy uniwersalności modeli obliczeń i pojęcia obliczalności
Weryfikacja: aktywny udział w ćwiczeniach, sprawdzian pisemny
Powiązane charakterystyki kierunkowe:
K_W01, K_W07
Powiązane charakterystyki obszarowe:
- Charakterystyka W02
- Zna podstawowe pojęcia teorii obliczalności: rozstrzygalność, częściowa rozstrzygalność, komplementarność częściowej rozstrzygalności, nierozstrzygalność
Weryfikacja: aktywny udział w ćwiczeniach, sprawdzian pisemny
Powiązane charakterystyki kierunkowe:
K_W04, K_W08
Powiązane charakterystyki obszarowe:
- Charakterystyka W03
- Zna podstawowe pojęcia teorii złożoności: problemy jako przeliczalne zbiory zadań, algorytmy i ich złożoność, sposoby określania rozmiarów zadań, kryteria wyznaczania złożoności, równoważność klas problemów, języków i funkcji naturalnych
Weryfikacja: sprawdzian pisemny
Powiązane charakterystyki kierunkowe:
K_W04, K_W08, K_W10
Powiązane charakterystyki obszarowe:
Profil ogólnoakademicki - umiejętności
- Charakterystyka U01
- Potrafi podać i uzasadnić charakterystykę przestrzeni problemów ze względu na ich rozstrzygalność, potrafi uzasadnić jakościową równoważność wybranych modeli obliczeń
Weryfikacja: aktywny udział w ćwiczeniach, sprawdzian pisemny, ocena rozwiązania problemu w ramach laboratorium
Powiązane charakterystyki kierunkowe:
K_U01, K_U02, K_U04, K_U05, K_U08, K_U14
Powiązane charakterystyki obszarowe:
- Charakterystyka U02
- Potrafi skonstruować algorytmy rozwiązania prostych problemów w różnych modelach obliczeń, potrafi uzasadnić jakościową równoważność modeli obliczeniowych, potrafi uzasadnić ilościową równoważność wybranych modeli obliczeń
Weryfikacja: aktywny udział w ćwiczeniach, sprawdzian pisemny,
Powiązane charakterystyki kierunkowe:
K_U01, K_U02, K_U04, K_U09, K_U11
Powiązane charakterystyki obszarowe:
- Charakterystyka U03
- Potrafi podać i uzasadnić charakterystykę przestrzeni problemów rozstrzygalnych ze względu na złożoność algorytmów rozwiązania problemów: klasy P, NP, coNP, NPC, Pspace, NPspace, relacje między tymi klasami
Weryfikacja: sprawdzian pisemny, ocena rozwiązania problemu w ramach laboratorium
Powiązane charakterystyki kierunkowe:
K_U14, K_U23, K_U01, K_U09, K_U11
Powiązane charakterystyki obszarowe:
Profil ogólnoakademicki - kompetencje społeczne
- Charakterystyka K01
- Jest w stanie w sposób prosty wyjaśnić podstawowe zagadnienia teorii obliczalności, praktyczne ograniczenia metod obliczeniowych i teoretyczne granice obliczalności
Weryfikacja: udział w dyskusji
Powiązane charakterystyki kierunkowe:
K_K01, K_K02, K_K04, K_K05
Powiązane charakterystyki obszarowe: