- Nazwa przedmiotu:
- Geometria i algebra liniowa
- Koordynator przedmiotu:
- dr hab. Jolanta Żak, prof. uczelni, Wydział Transportu Politechniki Warszawskiej, Zakład Inżynierii Systemów Transportowych i Logistyki
- Status przedmiotu:
- Obowiązkowy
- Poziom kształcenia:
- Studia I stopnia
- Program:
- Transport
- Grupa przedmiotów:
- Obowiązkowe
- Kod przedmiotu:
-
- Semestr nominalny:
- 1 / rok ak. 2022/2023
- Liczba punktów ECTS:
- 4
- Liczba godzin pracy studenta związanych z osiągnięciem efektów uczenia się:
- 120 godz., w tym: praca na wykładach 18 godz., praca na ćwiczeniach audytoryjnych 18 godz., studiowanie literatury przedmiotu 16 godz., samodzielne rozwiązywanie zadań 28 godz., konsultacje 3 godz., przygotowanie do kolokwiów: 15 godz., przygotowanie się do egzaminu 20 godz., udział w egzaminie 2 godz.
- Liczba punktów ECTS na zajęciach wymagających bezpośredniego udziału nauczycieli akademickich:
- 1,5 pkt. ECTS (41 godz., w tym: praca na wykładach 18 godz., praca na ćwiczeniach audytoryjnych 18 godz., konsultacje 3 godz., udział w egzaminie 2 godz.).
- Język prowadzenia zajęć:
- polski
- Liczba punktów ECTS, którą student uzyskuje w ramach zajęć o charakterze praktycznym:
- 0
- Formy zajęć i ich wymiar w semestrze:
-
- Wykład30h
- Ćwiczenia30h
- Laboratorium0h
- Projekt0h
- Lekcje komputerowe0h
- Wymagania wstępne:
- brak
- Limit liczby studentów:
- Wykład: 100 osób, ćwiczenia audytoryjne: 30 osób.
- Cel przedmiotu:
- Nabycie podstawowej wiedzy z zakresu algebry i geometrii niezbędnej w dalszym toku studiów. Wykształcenie umiejętności formułowania i rozwiązywania problemów matematycznych z zakresu wiedzy inżynierskiej.
- Treści kształcenia:
- Wykład:
Elementy logiki matematycznej, podstawowe działania logiczne, tautologie, funkcje zdaniowe, kwantyfikatory, elementy teorii mnogości, pojęcie zbioru, działania na zbiorach, zbiory otwarte i domknięte, iloczyn kartezjański zbiorów, relacje i funkcje, relacje równoważności i klasy abstrakcji, działania nieskończone, indukcja matematyczna, ciało liczb zespolonych, definicja liczby zespolonej i działań, sprzężenie, moduł i postać trygonometryczna liczby zespolonej, interpretacja geometryczna liczby zespolonej, wyznaczanie pierwiastka kwadratowego z liczby zespolonej, wzory Moivrea na wyznaczanie potęgi i pierwiastka liczby zespolonej, wielomiany i równania algebraiczne na ciele liczb zespolonych, zasadnicze twierdzenie algebry, pierwiastki równań algebraicznych o współczynnikach rzeczywistych, wzory Eulera, macierze i wyznaczniki, macierz jako operator liniowy, pojęcie wyznacznika i jego własności, rozwinięcie Laplace'a, zastosowanie operacji niezmienniczych dla wyznacznika do obliczania wyznaczników, działania na macierzach, pojecie macierzy odwrotnej i jej wyznaczanie, algebra macierzy, twierdzenie Cauchyego dla macierzy i jego zastosowania, pojęcie rzędu macierzy i jego wyznaczanie, układy równań liniowych, twierdzenie Cramera i wyznaczanie rozwiązania układu równań poprzez odwracanie macierzy, metoda eliminacji Gaussa,, rozwiązanie układów równań jednorodnych, twierdzenie Kroneckera-Capelliego, rozwiązywanie układów równań liniowych z parametrem, przestrzenie metryczne, definicja i przykłady, pojęcie grupy i pierścienia, przestrzenie wektorowe, definicja i przykłady, liniowa niezależność wektorów, baza i wymiar przestrzeni, podprzestrzeń liniowa p,w, związek wymiaru podprzestrzeni liniowej p,w, z rzędem macierzy, przestrzeń euklidesowa n-wymiarowa, wektory związane i wektory swobodne, iloczyn skalarny, wektory prostopadłe i równoległe, kąt pomiędzy wektorami, rzut wektora na zadany kierunek, definicja i wyznaczanie iloczynu wektorowego, jego zastosowania w geometrii, iloczyn mieszany, pojęcie hiperpłaszczyzny, wektor, prosta i płaszczyzna w przestrzeni euklidesowej 2 i 3-wymiarowej, podstawowe własności, wyznaczenie kątów i odległości, krzywe stożkowe, definicja i własności, zastosowania w mechanice i optyce, powierzchnie stopnia drugiego,
Ćwiczenia audytoryjne:
Dowodzenie podstawowych twierdzeń logiki i algebry zbiorów, wykorzystanie kwantyfikatorów do formułowania twierdzeń matematycznych, dowodzenie twierdzeń metodą indukcji matematycznej, obliczanie wyrażeń arytmetycznych w dziedzinie zespolonej, wyznaczanie postaci trygonometrycznej, potęgi naturalnej i pierwiastków liczby zespolonej, wyznaczanie pierwiastków równań algebraicznych w dziedzinie zespolonej, obliczanie wyznaczników dowolnego stopnia, wykonywanie działań na macierzach, wyznaczanie macierzy odwrotnej oraz rzędu macierzy, rozwiązywanie układów równań liniowych oraz równań liniowych z parametrami, zastosowanie wiedzy z dziedziny przestrzeni wektorowych do rozwiązywania zadań z geometrii analitycznej, wyznaczanie wzajemnego położenia prostych i płaszczyzn w przestrzeni euklidesowej, opis prostych i płaszczyzn w przestrzeni 2 i 3 wymiarowych, zastosowanie wiedzy o krzywych stożkowych do rozwiązywania zadań z planimetrii
- Metody oceny:
- Wykład: egzamin pisemny, 5 zadań otwartych, wymagane jest uzyskanie ponad 50% punktów.
Ćwiczenia audytoryjne: 2 kolokwia pisemne, wymagane jest uzyskanie ponad 50% punktów z każdego.
Ocena zintegrowana: średnia arytmetyczna ocen z poszczególnych form zajęć.
- Egzamin:
- tak
- Literatura:
- 1) Leitner R., Zarys matematyki wyższej, część I i II, WNT, Warszawa;
2) Fichtenholz G.M., Rachunek różniczkowy i całkowy, części I, II, III, PWN, Warszawa;
3) Leitner R., Matuszewski W., Rojek Z., Zadania z matematyki wyższej, część I i II, WNT, Warszawa (podstawowy zbiór zadań);
4) Krysicki W., Włodarski L., Analiza matematyczna w zadaniach, część I i II, PWN, Warszawa;
5) Stankiewicz W., Zadania z matematyki dla wyższych uczelni technicznych, część I, PWN, Warszawa.
- Witryna www przedmiotu:
- www.wt.pw.edu.pl
- Uwagi:
- O ile nie powoduje to zmian w zakresie powiązań danego przedmiotu z efektami uczenia się określonymi dla programu studiów w treściach kształcenia mogą być wprowadzane na bieżąco zmiany związane z uwzględnieniem najnowszych osiągnięć naukowych.
Efekty uczenia się
Profil ogólnoakademicki - wiedza
- Charakterystyka W01
- Posiada wiedzę w zakresie algebry, w szczególności: algebry liniowej, elementów logiki i algebry abstrakcyjnej, ciała liczb zespolonych, rachunku macierzowego, układów równań liniowych
Weryfikacja: Kolokwium 1 ( 4 zadania z zakresu efektu, wymagane jest poprawne rozwiązanie jednego z tych zadań)
3 zadania na egzaminie
Powiązane charakterystyki kierunkowe:
Tr1A_W01
Powiązane charakterystyki obszarowe:
P6U_W, I.P6S_WG.o
- Charakterystyka W02
- Posiada wiedzę w zakresie geometrii analitycznej, w szczególności: przestrzeni wektorowych, podprzestrzeni liniowych i hiperpłaszczyzn, krzywych i powierzchni stopnia drugiego
Weryfikacja: Kolokwium 1 ( 4 zadania z zakresu efektu, wymagane jest poprawne rozwiązanie jednego z tych zadań)
3 zadania na egzaminie
Powiązane charakterystyki kierunkowe:
Tr1A_W01
Powiązane charakterystyki obszarowe:
P6U_W, I.P6S_WG.o
Profil ogólnoakademicki - umiejętności
- Charakterystyka U01
- Potrafi wykonać działania na liczbach zespolonych i macierzach, rozwiązywać równania w dziedzinie zespolonej oraz rozwiązywać układy równań z wykorzystaniem macierzy
Weryfikacja: 4 zadania na drugim kolokwium, wymagane jest uzyskanie ponad 50% punktów
Powiązane charakterystyki kierunkowe:
Tr1A_U11
Powiązane charakterystyki obszarowe:
P6U_U, I.P6S_UW.o, III.P6S_UW.o
- Charakterystyka U02
- Potrafi wykonać działania na macierzach, rozwiązywać układy równań z wykorzystaniem macierzy
Weryfikacja: 4 zadania na drugim kolokwium, wymagane jest uzyskanie ponad 50% punktów
Powiązane charakterystyki kierunkowe:
Tr1A_U11
Powiązane charakterystyki obszarowe:
P6U_U, I.P6S_UW.o, III.P6S_UW.o