Nazwa przedmiotu:
Teoria Sprężystości
Koordynator przedmiotu:
dr hab. inż. Adam Dacko, prof. uczelni
Status przedmiotu:
Fakultatywny ograniczonego wyboru
Poziom kształcenia:
Studia I stopnia
Program:
Mechanika i Projektowanie Maszyn
Grupa przedmiotów:
Specjalnosciowe
Kod przedmiotu:
NK474
Semestr nominalny:
7 / rok ak. 2021/2022
Liczba punktów ECTS:
2
Liczba godzin pracy studenta związanych z osiągnięciem efektów uczenia się:
1) Liczba godzin kontaktowych - 30, w tym: a) wykład - 15 godz., b) ćwiczenia - 15 godz., c) konsultacje - 1 godz. 2) Praca własna studenta - 20 godz., w tym: a) przygotowanie prac domowych - 10 godz., b) przygotowanie się do egzaminu - 10 godz. Razem - 50 godzin.
Liczba punktów ECTS na zajęciach wymagających bezpośredniego udziału nauczycieli akademickich:
1 punkt ECTS - liczba godzin kontaktowych - 30, w tym: a) wykład - 15 godz., b) ćwiczenia - 15 godz., c) konsultacje - 1 godz.
Język prowadzenia zajęć:
polski
Liczba punktów ECTS, którą student uzyskuje w ramach zajęć o charakterze praktycznym:
-
Formy zajęć i ich wymiar w semestrze:
  • Wykład15h
  • Ćwiczenia15h
  • Laboratorium0h
  • Projekt0h
  • Lekcje komputerowe0h
Wymagania wstępne:
Wiedza i umiejętności studentów nabyte w ramach przedmiotów: "Wytrzymałość konstrukcji 1" , "Wytrzymałość konstrukcji 2".
Limit liczby studentów:
Cel przedmiotu:
Zadanie przedmiotu to przekazanie w miarę zaawansowanej wiedzy z zakresu teorii spreżystości, niezbędnej dla przyszłych inżynierów konstruktorów maszyn i innych konstrukcji inżynierskich oraz inżynierów, zajmujących się problemami mechaniki ciała stałego odkształcalnego, w tym mechaniki materiałów i konstrukcji, dziedzin ciągle rozwijających się, gdyż zastosowania stymulują rozwój matematycznych modeli, aby przewidywalność zachowania się fizycznych modeli była wystarczająco dokładna.
Treści kształcenia:
Teoria fenomenologiczna: klasyczny model materialnego kontinuum, jako modelowanie rzeczywistości fizycznej. Liniowa teoria sprężystości: założenia i zasady, granice klasycznych założeń, zastosowania i ich ograniczenia. Podstawy notacji tensorowej. Charakteryzacja stanu naprężenia w określonym punkcie ciała - tensor stanu naprężenia (macierz reprezentacji tensora) w kartezjańskim układzie współrzędnych prostokątnych. Zagadnienie statyczne: równania równowagi wewnętrznej-równania Naviera w postaci różniczkowej, warunki Cauchy’ego, warunki brzegowe. Zagadnienie dynamiczne: równania ruchu, warunki Cauchy’ego, warunki brzegowe i początkowe. Prawo transformacji tensorów II rzędu dla składowych stanu naprężenia w układzie współrzędnych ortokartezjańskich, obróconych w przestrzeni względem układu współrzędnych pierwotnych. Charakteryzacja stanu naprężenia w określonym punkcie ciała poprzez naprężenia główne i orientację płaszczyzn głównych. Niezmienniki stanu naprężenia. Ekstremalne wartości naprężeń stycznych. Szczególne przypadki stanu naprężenia. Geometryczna teoria stanu odkształcenia dla infinitezymalnych odkształceń, relacje kinematyczne odkształcenie-przemieszczenie. Równania nierozdzielności odkształceń. Charakteryzacja stanu odkształcenia w określonym punkcie ciała - tensor stanu odkształcenia w ortokartezjańskim układzie współrzędnych prostokątnych. Pełna analogia pomiędzy tensorami naprężenia i odkształcenia. Odkształcenia główne i główne osie odkształceń. Ekstremalne wartości kątów odkształcenia postaciowego. Charakteryzacja odkształcenia objętościowego przez tensory kuliste naprężeń i odkształceń, a odkształcenia postaciowego przez ich dewiatory. Szczególne przypadki stanu odkształcenia. Podstawy termodynamiczne teorii sprężystości. Równania konstytutywne–uogólnione prawo Hooke’a, charakteryzujące reakcję materiału anizotropowego na działające obciążenie, w notacji tensorowej w ortokartezjańskim układzie współrzędnych, w zwężonej notacji tensorowej i w notacji macierzowej. Odwrotność równań konstytutywnych. Macierze reprezentacji tensorów naprężenia i odkształcenia. Tensory stałych sprężystości oraz stałych podatności: warunki symetrii, prawo transformacji tensorów IV rzędu, wpływ symetrii materiału / typy anizotropii. Restrikcje dla stałych materiałowych sprężystości i podatności na bazie rozważań termodynamicznych. Energia odkształcenia. Stałe materiałowe mierzone w warunkach izotermicznych oraz w warunkach adiabatycznych. Materiał izotropowy jako przypadek szczególny, przejście do stałych materiałowych: Lamego lub inżynierskich, prawo zmiany objętości oraz prawo zmiany postaci. Sformułowanie zagadnień inżynierskich do rozwiązania w ramach teorii sprężystości: zagadnienie proste, odwrotne i półodwrotne. Zestawienie podstawowych grup równań teorii sprężystości i występujących w nich niewiadomych – kartezjański układ współrzędnych prostokątnych. Metody rozwiązań przestrzennego zagadnienia prostego: w przemieszczeniach, w naprężeniach i rozwiązanie mieszane. Równania przemieszczeniowe Lamego: zagadnienie statyczne dla ciała izotropowego, warunki brzegowe; zagadnienie dynamiczne dla ciał anizotropowego i izotropowego. Równania naprężeniowe Beltramiego-Michella: zagadnienie statyczne dla ciała izotropowego, warunki brzegowe Podstawowe grupy równań teorii sprężystości oraz równania przemieszczeniowe dla ciał izotropowych - ortogonalne układy krzywoliniowe: walcowy i sferyczny Ogólne twierdzenia elastostatyki.: zasada prac wirtualnych, twierdzenia: o minimum energii potencjalnej, Castigliana o minimum energii komplementarnej, Bettiego o wzajemności prac, Maxwella o wzajemności przemieszczeń, Clapeyrona o pracy odkształcenia, Castigliana o pochodnej cząstkowej pracy odkształcenia, o jednoznaczności rozwiązania równań różniczkowych elastostatyki. Dwuwymiarowe zagadnienia elastostatyki. Płaski stan odkształcenia, płaski uogólniony stan naprężenia. Drogi rozwiązania: rozwiązanie równań przemieszczeniowych, rozwiązanie równań naprężeniowych, zastosowanie funkcji napreźeń Airy’ego; warunki brzegowe. Zagadnienia fundamentalne - przykłady rozwiązań analitycznych: rozwiązanie ścisłe, pośredni sposób rozwiązania, uproszczenie warunków brzegowych dzięki zastosowaniu szeregów, całek , transformacji Fouriera. Tendencje rozwojowe i kierunki rozwoju teorii sprężystości.
Metody oceny:
W trakcie semestru dwie kontrolowane prace domowe i ich obrona. Na zakończenie semestru egzamin końcowy.
Egzamin:
tak
Literatura:
1. W. Nowacki, Teoria Sprężystości, PWN, Warszawa 1970. 2. W. Nowacki, Teoria Sprężystości, cz.I w: Sprężystość, pod red. M. Sokołowskiego, PWN, Warszawa 1978. 3. T. C. T. Ting, Anisotropic Elasticity–Theory and Applications, Oxford University Press, New York – Oxford 1996. Literatura dodatkowa: materiały udostępniane przez prowadzacego przedmiot.
Witryna www przedmiotu:
Uwagi:

Efekty uczenia się

Profil ogólnoakademicki - wiedza

Charakterystyka ML.NK474_W01
Zna podstawowe koncepcje i pojęcia mechaniki ośrodka ciągłego.
Weryfikacja: Ocena pracy domowej, egzamin.
Powiązane charakterystyki kierunkowe: MiBM1_W03
Powiązane charakterystyki obszarowe:
Charakterystyka ML.NK474_W02
Posiada podstawowe wiadomości nt. matematycznego, ilościowego opisu stanu naprężenia w ciele odkształcalnym.
Weryfikacja: Ocena pracy domowej nr 1, egzamin.
Powiązane charakterystyki kierunkowe: MiBM1_W01
Powiązane charakterystyki obszarowe:
Charakterystyka ML.NK474_W02
Posiada podstawowe wiadomości nt. matematycznego, ilościowego opisu stanu naprężenia w ciele odkształcalnym.
Weryfikacja: Ocena pracy domowej nr 1, egzamin.
Powiązane charakterystyki kierunkowe: MiBM1_W03
Powiązane charakterystyki obszarowe:
Charakterystyka ML.NK474_W03
Ma podstawową wiedzę w zakresie matematycznego opisu stanu odkształcenia w ciele stałym.
Weryfikacja: Ocena pracy domowej nr 1, egzamin.
Powiązane charakterystyki kierunkowe: MiBM1_W01
Powiązane charakterystyki obszarowe:
Charakterystyka ML.NK474_W03
Ma podstawową wiedzę w zakresie matematycznego opisu stanu odkształcenia w ciele stałym.
Weryfikacja: Ocena pracy domowej nr 1, egzamin.
Powiązane charakterystyki kierunkowe: MiBM1_W03
Powiązane charakterystyki obszarowe:
Charakterystyka ML.NK474_W04
Ma podstawową wiedzę nt. modelowania konstytutywnego w mechanice ciała odkształcalnego oraz warunków/ograniczeń, którymi podlegają modele konstytutywne.
Weryfikacja: Egzamin.
Powiązane charakterystyki kierunkowe: MiBM1_W01
Powiązane charakterystyki obszarowe:
Charakterystyka ML.NK474_W04
Ma podstawową wiedzę nt. modelowania konstytutywnego w mechanice ciała odkształcalnego oraz warunków/ograniczeń, którymi podlegają modele konstytutywne.
Weryfikacja: Egzamin.
Powiązane charakterystyki kierunkowe: MiBM1_W03
Powiązane charakterystyki obszarowe:
Charakterystyka ML.NK474_W05
Zna podstawowe równania liniowej elastostatyki i sformułowania zagadnień granicznych dla tych równań.
Weryfikacja: Egzamin.
Powiązane charakterystyki kierunkowe: MiBM1_W01
Powiązane charakterystyki obszarowe:
Charakterystyka ML.NK474_W05
Zna podstawowe równania liniowej elastostatyki i sformułowania zagadnień granicznych dla tych równań.
Weryfikacja: Egzamin.
Powiązane charakterystyki kierunkowe: MiBM1_W03
Powiązane charakterystyki obszarowe:

Profil ogólnoakademicki - umiejętności

Charakterystyka ML.NK474_U01
Potrafi wykonywać proste analizy stanu naprężenia i odkształcenia posługując się rachunkiem tensorowym.
Weryfikacja: Ocena pracy domowej, egzamin.
Powiązane charakterystyki kierunkowe: MiBM1_U15
Powiązane charakterystyki obszarowe:
Charakterystyka ML.NK474_U01
Potrafi wykonywać proste analizy stanu naprężenia i odkształcenia posługując się rachunkiem tensorowym.
Weryfikacja: Ocena pracy domowej, egzamin.
Powiązane charakterystyki kierunkowe: MiBM1_U21
Powiązane charakterystyki obszarowe:
Charakterystyka ML.NK474_U02
Potrafi sformułować, objaśnić znaczenie i wykorzystać praktycznie podstawowe twierdzenia liniowej elastostatyki.
Weryfikacja: Ocena pracy domowej, egzamin.
Powiązane charakterystyki kierunkowe: MiBM1_U21
Powiązane charakterystyki obszarowe:
Charakterystyka ML.NK474_U03
Potrafi otrzymać i omówić rozwiązania analityczne dla wybranych przypadków prostych zagadnień elastostatyki liniowej.
Weryfikacja: Ocena pracy domowej, egzamin.
Powiązane charakterystyki kierunkowe: MiBM1_U15
Powiązane charakterystyki obszarowe:
Charakterystyka ML.NK474_U03
Potrafi otrzymać i omówić rozwiązania analityczne dla wybranych przypadków prostych zagadnień elastostatyki liniowej.
Weryfikacja: Ocena pracy domowej, egzamin.
Powiązane charakterystyki kierunkowe: MiBM1_U21
Powiązane charakterystyki obszarowe: