Nazwa przedmiotu:
Matematyka
Koordynator przedmiotu:
dr / Cezary Obczyński / adiunkt
Status przedmiotu:
Obowiązkowy
Poziom kształcenia:
Studia I stopnia
Program:
Mechanika i Budowa Maszyn
Grupa przedmiotów:
Obowiązkowe
Kod przedmiotu:
WS1A_06_02
Semestr nominalny:
2 / rok ak. 2018/2019
Liczba punktów ECTS:
6
Liczba godzin pracy studenta związanych z osiągnięciem efektów uczenia się:
Wykład 30h; Ćwiczenia 45h; Przygotowanie się do zajęć 30h; Zapoznanie się ze wskazaną literaturą 5h; Przygotowanie do kolokwium 20h; Przygotowanie do egzaminu 20h; Razem 150h = 6 ECTS
Liczba punktów ECTS na zajęciach wymagających bezpośredniego udziału nauczycieli akademickich:
Wykłady - 30 h; Ćwiczenia - 45 h; Razem - 75 h = 3 ECTS
Język prowadzenia zajęć:
polski
Liczba punktów ECTS, którą student uzyskuje w ramach zajęć o charakterze praktycznym:
0
Formy zajęć i ich wymiar w semestrze:
  • Wykład30h
  • Ćwiczenia45h
  • Laboratorium0h
  • Projekt0h
  • Lekcje komputerowe0h
Wymagania wstępne:
Limit liczby studentów:
Wykład: min. 15; Ćwiczenia: 15 - 30
Cel przedmiotu:
Zna pojęcia rachunku różniczkowego funkcji dwóch i trzech zmiennych oraz jego podstawowe zastosowania. Posiada wiedzę w zakresie obliczania całki wielokrotnej oraz krzywoliniowej. Ma uporządkowaną wiedzę w zakresie równań różniczkowych zwyczajnych.
Treści kształcenia:
W1. Funkcje wielu zmiennych rzeczywistych. W2. Rachunek różniczkowy funkcji wielu zmiennych rzeczywistych. Tw. Schwarza. Wielomiany Taylora dla funkcji dwóch zmiennych. W3. Ekstrema lokalne funkcji dwóch zmiennych rzeczywistych. Najmniejsza i największa wartość funkcji ciągłej na zbiorze domkniętym i ograniczonym. W4. Ekstrema lokalne funkcji trzech zmiennych rzeczywistych. Ekstrema warunkowe. W5. Wprowadzenie do równań różniczkowych zwyczajnych. Równania różniczkowe o zmiennych rozdzielonych, równania sprowadzalne do równań o zmiennych rozdzielonych. Zagadnienie Cauchy'ego. W6. Równania różniczkowe zwyczajne pierwszego rzędu liniowe. W7. Równanie różniczkowe Bernoulliego, równanie zupełne. W8. Równania różniczkowe liniowe rzędu n o stałych współczynnikach. W9. Definicja całki podwójnej po prostokącie. Całka podwójna po zbiorze normalnym w R2. Całki iterowane. W10. Definicja całki potrójnej po prostopadłościanie. Całka potrójna po zbiorze normalnym w R3. W11. Twierdzenia o zamianie zmiennych pod znakiem całki. W12. Zastosowanie geometryczne i fizyczne całki podwójnej i potrójnej. W13. Pole skalarne i wektorowe. W14. Całka w polu wektorowym. W15. Twierdzenie Greena, twierdzenie Stokesa. C1. Szkicowanie wykresów funkcji dwóch zmiennych. C2. Obliczanie pochodnych cząstkowych rzędu pierwszego i drugiego funkcji dwóch i trzech zmiennych. Wyznaczanie różniczki zupełnej funkcji dwóch zmiennych. Rozwijanie w szereg Taylora funkcji dwóch zmiennych. C3. Wyznaczanie ekstremów lokalnych funkcji dwóch zmiennych. Wyznaczanie najmniejszej oraz największej wartości funkcji dwóch zmiennych na zbiorze zwartym. C4. Wyznaczanie ekstremów lokalnych funkcji trzech zmiennych oraz ekstremów warunkowych. C5. Rozwiązywanie równań różniczkowych liniowych rzędu pierwszego o zmiennych rozdzielonych oraz równań sprowadzalnych do równań o zmiennych rozdzielonych. C6. Rozwiązywanie równań różniczkowych liniowych rzędu pierwszego. C7. Rozwiązywanie równań Bernoulliego oraz równań różniczkowych zupełnych. C8. Rozwiązywanie równań różniczkowych liniowych rzędu n o stałych współczynnikach. C9. Obliczanie całki podwójnej po prostokącie oraz zbiorze normalnym w R2. C10. Obliczanie całki potrójnej po prostopadłościanie oraz zbiorze normalnym w R3. C11. Obliczanie całek wielokrotnych we współrzędnych kartezjańskich, biegunowych, walcowych oraz współrzędnych sferycznych. C12. Obliczanie wielkości geometrycznych oraz fizycznych za pomocą całek wielokrotnych. C13. Obliczanie wybranych wielkości pola wektorowego. C14. Obliczanie całek krzywoliniowych. C15. Obliczanie całek powierzchniowych.
Metody oceny:
1. Zaliczenie przedmiotu uzyskuje student w oparciu o liczbę punktów uzyskanych z dwóch kolokwiów, wejściówek oraz punktów uzyskanych za aktywność na zajęciach i poprawnie wykonaną pracę domową. Kryterium oceny: (0 - 50%) liczby punktów – ocena 2,0 <50% - 70%)  - 3,0 <70% - 80%)  - 3,5 <80% - 90%)  - 4,0 <90% - 95%)  - 4,5 <95% - 100%> - 5,0 2. Warunkiem zaliczenia ćwiczeń jest uzyskanie minimum 20 z możliwych 40 punktów (warunkiem zaliczenia każdego kolokiwum jest uzyskanie co najmniej 10 punktów) oraz co najmniej 10 punktów z wejściówek (na możliwych 20). Aktywna postawa studenta na zajęciach może podwyższyć ocenę z zaliczenia ćwiczeń o pół stopnia. 3. Ocena z wykładu jest oceną z egzaminu, który składa się z zadań otwarych i pytań z teorii. Student z egzaminu może uzyskać maksymalnie 60 punktów, a ocena jest wystawiona na podstawie kryterium oceny. 4. Punkty uzyskane z egzaminu są sumowane z punktami z zaliczenia. Ocena końcowa jest ustalona zgodnie z kryterium oceny. 5. Warunkiem dopuszczenia do egzaminu jest zdobycie przez studenta (z dwóch kolokwiów) co najmniej 20 punktów. 6. Student, który opuścił i nie usprawiedliwił (zwolnienie lekarskie) więcej niż 3 ćwiczeń nie uzyskuje dopuszczenia do egzaminu. 7. Brak oceny pozytywnej z egzaminu oznacza brak zaliczenia przedmiotu. pomocniczych.
Egzamin:
tak
Literatura:
1) H. Łubowicz, B. Wieprzkowicz "Matematyka" Oficyna Wydawnicza PW, Warszawa 1999, 2) W. Stankiewicz "Zadania z matematyki dla wyższych uczelni technicznych" część IA,B, PWN, Warszawa 1995. 3) M. Gewart, Z. Skoczylas "Analiza matematyczna 1, 2. Definicje, twierdzenia, wzory" Oficyna Wydawnicza Gis Wrocław 2002 4) R. Rudnicki "Wykłady z analizy matematycznej" PWN Warszawa 2006 5) R. Larson, B. H. Edwards "Calculus" Ninth Edithon, USA 2010
Witryna www przedmiotu:
-
Uwagi:

Efekty uczenia się

Profil ogólnoakademicki - wiedza

Efekt W01_01
Ma uporządkowaną wiedzę w zakresie analizy matematycznej, w szczególności - w zakresie rachunku różniczkowego i całkowego funkcji wielu zmiennych, jego zastosowań oraz elementów równań różniczkowych zwyczajnych.
Weryfikacja: Odpowiedzi ustne na zajęciach; Kolokwium (W1 - W5, C1 - C5); Kolokwium (W6 - W11, C7 - C11); Egzamin pisemny (W1 - W15, C1 - C15)
Powiązane efekty kierunkowe: M1A_W01_01
Powiązane efekty obszarowe: T1A_W01

Profil ogólnoakademicki - umiejętności

Efekt U09_01
Potrafi formułować definicje, twierdzenia oraz własności używając reguł logiki matematycznej. Umie rozwiązywać podstawowe typy równań różniczkowych zwyczajnych opisujących zjawiska fizyczne. Potrafi wyznaczyć masę, momenty statyczne, momenty bezwładności obszarów płaskich i przestrzennych, umie stosować opis analityczny krzywych i powierzchni w R3, Potrafi wyznaczyć masę, momenty statyczne, momenty bezwładności krzywych i powierzchni , wyznaczyć pracę w polu sił, strumień pola przez powierzchnię zorientowaną. Umie korzystać z rachunku różniczkowego w celu rozwiązywania zadań optymalizacyjnych i aproksymacyjnych z wieloma zmiennymi.
Weryfikacja: Odpowiedzi ustne na zajęciach; Prace domowe (sprawdziany); Kolokwium (W1 - W5, C1 - C5); Kolokwium (W6 - W11, C7 - C11); Egzamin pisemny (W1 - W15, C1 - C15)
Powiązane efekty kierunkowe: M1A_U09_01
Powiązane efekty obszarowe: T1A_U09

Profil ogólnoakademicki - kompetencje społeczne

Efekt K01_01
Rozumie potrzebę ciągłego dokształcania się.
Weryfikacja: Kolokwium (W1 - W5, C1 - C5); Kolokwium (W6 - W11, C7 - C11); Egzamin pisemny (W1 - W15, C1 - C15), aktywna postawa studenta na zajęciach, aktywny udział w konsultacjach
Powiązane efekty kierunkowe: M1A_K01_01
Powiązane efekty obszarowe: T1A_K01