Nazwa przedmiotu:
Matematyka 2/ Mathematics 2
Koordynator przedmiotu:
dr Robert Stępnicki
Status przedmiotu:
Obowiązkowy
Poziom kształcenia:
Studia I stopnia
Program:
Inżynieria Materiałowa
Grupa przedmiotów:
Obowiązkowy
Kod przedmiotu:
MAT2
Semestr nominalny:
2 / rok ak. 2015/2016
Liczba punktów ECTS:
7
Liczba godzin pracy studenta związanych z osiągnięciem efektów uczenia się:
1. Godziny kontaktowe z nauczycielem akademickim wynikające z planu studiów - 90. 2. Godziny kontaktowe z nauczycielem akademickim w ramach konsultacji - 15. 3. Godziny kontaktowe z nauczycielem akademickim w ramach zaliczeń i egzaminów - 10. 4. Przygotowanie do zajęć (studiowanie literatury, odrabianie prac domowych itp.) - 15. 5. Zbieranie informacji, opracowanie wyników. 6. Przygotowanie sprawozdania, prezentacji, raportu, dyskusji. 7. Nauka samodzielna – przygotowanie do zaliczenia/kolokwium/egzaminu - 75.
Liczba punktów ECTS na zajęciach wymagających bezpośredniego udziału nauczycieli akademickich:
4 punkty ECTS - godziny kontaktowe - 120, w tym: obecność na wykładach - 45 godzin, udział w ćwiczeniach - 45 godzin, konsultacje do wykładu i ćwiczeń - 30 godzin.
Język prowadzenia zajęć:
polski
Liczba punktów ECTS, którą student uzyskuje w ramach zajęć o charakterze praktycznym:
-
Formy zajęć i ich wymiar w semestrze:
  • Wykład45h
  • Ćwiczenia45h
  • Laboratorium0h
  • Projekt0h
  • Lekcje komputerowe0h
Wymagania wstępne:
Zaliczenie matematyki 1
Limit liczby studentów:
wykłady - bez limitu, ćwiczenia 15-30 studentów
Cel przedmiotu:
1. Zapoznanie P.T. Studentów z szeregami liczbowymi i szeregami funkcyjnymi oraz technikami rozwijaniem funkcji w szeregi funkcyjne. 2. Zapoznanie P.T. Studentów z rachunkiem różniczkowym funkcji wielu zmiennych i jego zastosowaniami w zagadnieniach optymalizacji. 3. Zapoznanie P.T. Studentów z rachunkiem całkowym funkcji wielu zmiennych i jego zastosowaniami geometrycznymi, i fizycznymi. 4. Zapoznanie P.T. Studentów z równaniami różniczkowymi zwyczajnymi i ich zastosowaniem w zagadnieniach fizycznych.
Treści kształcenia:
Wykład: 1. Szeregi liczbowe. Zbieżność punktowa ciągów i szeregów funkcyjnych. Szeregi potęgowe, promień i zakres zbieżności szeregu potęgowego, rozwijanie funkcji w szereg potęgowy - 5 godzin. 2. Euklidesowa przestrzeń rzeczywista wielowymiarowa i pojęcia topologiczne w tej przestrzeni. Ciągi liczbowe w euklidesowej przestrzeni rzeczywistej wielowymiarowej. Funkcje wielu zmiennych i ich własności. Granica i ciągłość funkcji wielu zmiennych. Własności funkcji ciągłych - 5 godzin. 3. Pochodne cząstkowe rzędu pierwszego i pochodna funkcji wielu zmiennych. Różniczka funkcji i jej zastosowania. Pochodne cząstkowe rzędu drugiego i druga pochodna. Ekstremum funkcji wielu zmiennych. Wartości max. i min. globalne funkcji ciągłej wielu zmiennych na obszarze zwartym. Powierzchnie drugiego stopnia w euklidesowej trójwymiarowej przestrzeni rzeczywistej - 6 godzin. 4. Całka podwójna i jej własności. Zamiana całki podwójnej na całki pojedyncze. Zamiana zmiennych w całce podwójnej, współrzędne biegunowe. Całka potrójna i jej własności. Zamiana całki potrójnej na całki pojedyncze. Zamiana zmiennych w całce potrójnej, współrzędne walcowe i sferyczne. Zastosowania geometryczne i fizyczne tych całek - 10 godzin. 5. Równania różniczkowe zwyczajne rzędu pierwszego, rozwiązania szczególne i ogólne. Równania różniczkowe o zmiennych rozdzielonych, jednorodne, liniowe i Bernoulliego oraz zupełne. Równania różniczkowe rzędu drugiego sprowadzalne do równań rzędu pierwszego. Równania różniczkowe liniowe wyższych rzędów o zmiennych i stałych współczynnikach. Metody rozwiązywania tych równań. Układy równań różniczkowych - 10 godzin. 6. Pole skalarne i wektorowe. Operacje różniczkowe na tych polach i ich własności. Potencjał pola wektorowego. Łuk regularny i jego orientacja. Całka krzywoliniowa niezorientowana, jej własności i zastosowania. Całka krzywoliniowa zorientowana ,jej własności i zastosowania. Niezależność całki od drogi całkowania. Wzór Greena - 9 godzin. Ćwiczenia audytoryjne: 1. Badanie zbieżności szeregów liczbowych. Badanie zbieżności ciągów i szeregów funkcyjnych. Wyznaczanie promienia zbieżności i zakresu zbieżności szeregu potęgowego. Rozwijanie funkcji w szereg potęgowy - 9 godzin. 2. Obliczanie granic ciągów w euklidesowej wielowymiarowej przestrzeni rzeczywistej. Wyznaczanie dziedziny funkcji wielu zmiennych. Obliczanie granicy funkcji wielu zmiennych. Badanie ciągłości tych funkcji - 6 godzin. 3. Obliczanie pochodnych cząstkowych funkcji wielu zmiennych. Zastosowania różniczki funkcji. Wyznaczanie ekstremów funkcji. Wyznaczanie wartości max. i min. globalnie funkcji na zbiorze zwartym - 6 godzin. 4. Obliczanie całek podwójnych po obszarach normalnych we współrzędnych kartezjańskich i biegunowych. Obliczanie całek potrójnych po obszarach normalnych we współrzędnych kartezjańskich , walcowych i sferycznych. Zastosowania całek podwójnych i potrójnych w zagadnieniach geometrycznych i fizycznych - 12 godzin. 5. Rozwiązywanie równań różniczkowych rzędu pierwszego wybranych typów. Rozwiązywanie równań różniczkowych rzędu drugiego sprowadzalnych do rzędu pierwszego. Rozwiązywanie równań różniczkowych liniowych wyższych rzędów o stałych współczynnikach oraz układów równań liniowych - 12 godzin.
Metody oceny:
Organizacja i warunki zaliczenia wykładu: Liczba wykładów 15 po 3 godziny, a więc w sumie 45 godz. Wykłady są zaliczane na podstawie części teoretycznej egzaminu sesyjnego. Warunkiem dopuszczenia do egzaminu jest zaliczenie ćwiczeń. Terminy egzaminu są ustalane przez dziekanat na podstawie regulaminu studiów. Egzamin sesyjny przeprowadzany jest w formie pisemnej; składa się z dwóch części : zadaniowej i teoretycznej. Warunkiem koniecznym zdania egzaminu jest zaliczenie obu jego części. Podczas egzaminu nie można korzystać z notatek, wzorów i telefonów komórkowych. P. T. Student może być zwolniony z części zadaniowej egzaminu sesyjnego, gdy uzyska z zaliczenia ćwiczeń ocenę co najmniej 4,0 i ma zaliczone - „przepołowione” wszystkie kolokwia. Część teoretyczną egzaminu sesyjnego można również zaliczać na organizowanych w trakcie trwania semestru dwóch repetytoriach – „zerówkach połówkach”, których terminy ustala wykładowca ze starostą roku. Zwolnienie z części zadaniowej egzaminu sesyjnego i zaliczenie repetytoriów, zalicza egzamin przed sesją egzaminacyjną. Organizacja i warunki zaliczenia ćwiczeń audytoryjnych: Liczba ćwiczeń audytoryjnych - 15, po 3 godz., a więc w sumie 45 godz. Ćwiczenia zaliczane są na podstawie wyników 3. pisemnych prac kontrolnych (kolokwiów) po 12 pkt. każde, w formie zadań otwartych do samodzielnego rozwiązania na wyznaczonych zajęciach oraz bieżących odpowiedzi ustnych (max. 4 pkt. uznaniowe przez prowadzącego ćwiczenia). Termin pracy kontrolnej ustala prowadzący ćwiczenia, co najmniej dwa tygodnie przed jej terminem. Zakres treści precyzuje kierownik przedmiotu; wówczas zadania przygotowuje i ocenia prowadzący ćwiczenia. Podczas kolokwium P.T. Student nie może korzystać z notatek, wzorów i telefonów komórkowych. Prac kontrolnych nie można poprawiać w semestrze. Nieobecność na ćwiczeniach można odrobić na odpowiednich zajęciach w innej grupie .
Egzamin:
tak
Literatura:
1. R. Leitner, J. Zacharski, Zarys matematyki wyższej, cz. I, II, III, WN-T, Warszawa. 2. G. M. Fichtenholz, Rachunek różniczkowy i całkowy, cz. I, II, III, WN PWN, Warszawa. 3. W. Krysicki, L. Włodarski, Analiza matematyczna w zadaniach, cz. I. II, WN PWN, Warszawa. 4. R. Leitner, W. Matuszewski, Z. Rojek, Zadania z matematyki wyższej, cz. I, II, W-N Techniczne, Warszawa. 5. M. Gewert, Z. Skoczylas, Równania różniczkowe zwyczajne, OW GiS, Wrocław. 6. M. Gewert, Z. Skoczylas, Elementy analizy wektorowej, OW GiS, Wrocław. 7. Materiały dydaktyczne z matematyki dla semestru II. przesłane P.T. Studentom mailem.
Witryna www przedmiotu:
brak
Uwagi:

Efekty uczenia się

Profil ogólnoakademicki - wiedza

Efekt MAT2_W01
Ma wiedzę z szeregów liczbowych i funkcyjnych, funkcji wielu zmiennych, całek wielokrotnych, równań różniczkowych zwyczajnych oraz potrafi zastosować tę wiedzę w zagadnieniach fizycznych.
Weryfikacja: Egzamin z zadań i teorii, kolokwium.
Powiązane efekty kierunkowe: IM_W01
Powiązane efekty obszarowe: T1A_W01

Profil ogólnoakademicki - umiejętności

Efekt MAT2_U01
Na podstawie wiedzy uzyskanej w trakcie wykładów oraz analizy zalecanej literatury fachowej lub innych źródeł rozwija- poprzez pracę własną - swoje umiejętności w rozwiązywaniu zadań.
Weryfikacja: Ocena zadań domowych, obserwacja i ocena umiejętności praktycznych studenta w trakcie ćwiczeń, kolokwium.
Powiązane efekty kierunkowe: IM_U05
Powiązane efekty obszarowe: T1A_U05

Profil ogólnoakademicki - kompetencje społeczne

Efekt MAT2_K01
Razem z innymi uczestnikami zajęć aktywnie współpracuje nad rozwiązaniem zadania. Uważnie słucha wypowiedzi innych uczestników. Konstruktywnie prowadzi dyskusję. W trakcie prac zespołowych dzieli się sposób konstruktywny posiadaną wiedzą i umiejętnościami z innymi uczestnikami.
Weryfikacja: Obserwacja pracy studentów na ćwiczeniach
Powiązane efekty kierunkowe: IM_K03
Powiązane efekty obszarowe: T1A_K03