- Nazwa przedmiotu:
- Matematyka
- Koordynator przedmiotu:
- dr Katarzyna Matczak
- Status przedmiotu:
- Obowiązkowy
- Poziom kształcenia:
- Studia I stopnia
- Program:
- Inżynieria Środowiska
- Grupa przedmiotów:
- Wspólne dla wydziału
- Kod przedmiotu:
- WN1A_06_01
- Semestr nominalny:
- 1 / rok ak. 2015/2016
- Liczba punktów ECTS:
- 6
- Liczba godzin pracy studenta związanych z osiągnięciem efektów uczenia się:
- Wykład (liczba godzin według planu studiów) - 30; ćwiczenia (liczba godzin według planu studiów)-10, przygotowanie do zajęć-10, zapoznanie się z literaturą - 9; przygotowanie do zaliczenia-35; przygotowanie do kolokwium-25, przygotowanie do egzaminu - 31; RAZEM: 150
- Liczba punktów ECTS na zajęciach wymagających bezpośredniego udziału nauczycieli akademickich:
- Wykład (liczba godzin według planu studiów) - 30h = 1,2 ECTS; ćwiczenia (liczba godzin według planu studiów)-10h = 0,4ECTS, RAZEM:40h = 1,6ECTS
- Język prowadzenia zajęć:
- polski
- Liczba punktów ECTS, którą student uzyskuje w ramach zajęć o charakterze praktycznym:
- 0,0
- Formy zajęć i ich wymiar w semestrze:
-
- Wykład450h
- Ćwiczenia150h
- Laboratorium0h
- Projekt0h
- Lekcje komputerowe0h
- Wymagania wstępne:
- Znajomość treści z matematyki programu szkoły ponadgimnazjalnej
- Limit liczby studentów:
- wykład min. 15 studentów; ćwiczenia 15-30 studentów.
- Cel przedmiotu:
- Poszerzenie zbioru liczbowego do zbioru liczb zespolonych. Wprowadzenie działań na wektorach w przestrzeni i przedstawienie ich interpretacji. Umiejętność klasyfikacji i szkicowania powierzchni stopnia drugiego w przestrzeni. Przedstawienie różnych metod rozwiązywania układów równań liniowych o stałych współczynnikach. Zapoznanie z podstawowymi twierdzeniami rachunku różniczkowego funkcji jednej zmiennej rzeczywistej i jego zastosowaniami. Umiejętność obliczania całek nieoznaczonych.
- Treści kształcenia:
- W1 - Ciało liczb zespolonych. Działania na liczbach zespolonych w postaci algebraicznej i trygonometrycznej. Równanie kwadratowe w dziedzinie zespolonej. W2- Działania na macierzach. Wyznacznik macierzy kwadratowej stopnia dwa i stopnia trzy. Własności wyznacznika macierzy.
W3- Układ równań liniowych o stałych współczynnikach. Twierdzenia Cramera, Kroneckera-Capellego. W4- Działania na wektorach w przestrzeni. Równanie płaszczyzny i równanie prostej w przestrzeni. Interpretacja działań na wektorach.
W5-Krzywe stożkowe i powierzchnie stopnia drugiego w przestrzeni. W6- Ciąg liczbowy. Granica i monotoniczność ciągu liczbowego. Szeregi liczbowe i kryteria zbieżności szeregów liczbowych. Szereg potęgowy, przedział zbieżności szeregu potęgowego. W7-Granica funkcji. Asymptoty wykresu funkcji. Ciągłość funkcji. W8-Pochodna funkcji rzędu pierwszego i rzędu drugiego oraz ich zastosowania. Twierdzenia Rolle'a i Lagrange'a.
W9-Badanie przebiegu zmienności funkcji i szkicowanie jej wykresu. Pochodna funkcji odwrotnej, funkcje cyklometryczne i ich własności.
W10- Całka nieoznaczona i jej własności. Twierdzenia o całkowaniu przez części i przez podstawianie. Całkowanie funkcji wymiernych i trygonometrycznych.
C1-Działania na liczbach zespolonych w postaci algebraicznej i trygonometrycznej. Pierwiastkowanie i potęgowanie liczby zespolonej w postaci trygonometrycznej. C2- Wykonywanie działań na macierzach. Obliczanie wyznacznika macierzy kwadratowej stopnia dwa i stopnia trzy. Obliczanie macierzy odwrotnej do danej macierzy niosobliwej stopnia dwa lub trzy.
C3- Badanie rzędu macierzy. Rozwiązywanie układów równań liniowych różnymi metodami.
C4- Wykonywanie działań na wektorach w przestrzeni i ich interpretacja. Równanie prostej i płaszczyzny w przestrzeni.
C5- Powtórzenie ćwiczeń C1-C4.
C6- Obliczanie granic i badanie monotoniczności ciągu liczbowego. Badanie zbieżności szeregów liczbowych.
C7- Obliczanie granic funkcji. Badanie istnienia asymptot wykresu funkcji.
C8- Obliczanie pochodnych funkcji rzędu pierwszego i rzędu drugiego.
C9- Badanie przebiegu zmienności funkcji i szkicowanie jej wykresu. C10-Powtórzenie ćwiczeń C6-C9.
- Metody oceny:
- Zaliczenie przedmiotu uzyskuje student, który zdobył co najmniej 20 punktów. Dwa kolokwia odbywają się w czasie piątego i dziewiątego zjazdu w semestrze. Możliwe jest przesunięcie terminów, po wcześniejszym uzgodnieniu z prowadzącym ćwiczenia. W czasie trwania kolokwium można korzystać z kalkulatora, lecz nie w telefonie komórkowym. Telefony w czasie trwania pracy pisemnej należy wyłączyć. Nie można korzystać z notatek z wykładów i z ćwiczeń. Za każde z kolokwiów student uzyskuje 20 punktów. W sumie z kolokwiów może uzyskać maksymalnie 40 punktów. Osoby bez zaliczenia mogą się o nie starać w sesji egzaminacyjnej przystępując do egzaminu, który będzie stanowił wtedy formę zaliczenia poprawkowego. Za aktywną postawę studenta oraz poprawne wykonanie pracy domowej prowadzący może doliczyć dodatkowe punkty.
Egzamin składa się z zadań otwartych, które student rozwiązuje samodzielnie w trakcie terminów podanych w harmonogramie sesji. W czasie egzaminu student może korzystać z kalkulatora, lecz nie w telefonie komórkowym. Telefony w czasie trwania pracy pisemnej należy wyłączyć. Nie można korzystać z notatek z wykładów i z ćwiczeń. Student za egzamin może uzyskać 60 punktów. Punkty uzyskane z egzaminu są sumowane z punktami z zaliczenia. Ocena końcowa jest ustalona zgodnie z następującymi zasadami:
[50-60)-ocena 3,0
[60-70)-ocena 3,5
[70-80)-ocena 4,0
[80-90)- ocena 4,5
[90-100] – ocena 5,0.
Osoby, które uzyskały 20 i więcej punktów z dwóch kolokwiów mogą przystąpić do terminu "0" egzaminu, który odbywa się w czasie ostatniego zjazdu.
- Egzamin:
- tak
- Literatura:
- 1) H. Łubowicz, B. Wieprzkowicz "Matematyka" Oficyna Wydawnicza PW, Warszawa 1999, 2)R. Rudnicki "Wykłady z analizy matematycznej", PWN Warszawa 2006, 3) W. Stankiewicz "Zadania z matematyki dla wyższych uczelni technicznych" część IA,B, PWN, Warszawa 1995, 4) R. Larson, B. H. Edwards "Calculus" Ninth Edithon, USA 2010.
- Witryna www przedmiotu:
- brak
- Uwagi:
- brak
Efekty uczenia się
Profil ogólnoakademicki - wiedza
- Efekt W01_01
- Posiada uporządkowaną wiedzę w zakresie podstawowych pojęć algebry liniowej i geometrii w przestrzeni. Zna pojęcia zbieżności ciągu, szeregu liczbowego i szeregu potęgowego. Zna reguły różniczkowania funkcji jednej zmiennej rzeczywistej i zastosowania pochodnej. Ma uporządkowaną wiedzę o własnościach całki nieoznaczonej.
Weryfikacja: Kolokwium (W1-W10, C1-C10), Egzamin (W1-W10), obserwacja aktywności studentów na zajęciach.
Powiązane efekty kierunkowe:
I1A_W01_01
Powiązane efekty obszarowe:
T1A_W01
Profil ogólnoakademicki - umiejętności
- Efekt U09_02
- Umie korzystać z rachunku macierzowego, rozwiązywać układy równań liniowych oraz bada położenie punktów, prostych i płaszczyzn w przestrzeni. Potrafi różniczkować funkcje jednej zmiennej rzeczywistej i stosować ją do badania monotoniczności i szukania ekstremów funkcji. Potrafi obliczyć całkę nieoznaczoną, wykorzystując jej właściwości.
Weryfikacja: Kolokwium (W1-W10, C1-C10), Egzamin (W1-W10), obserwacja aktywności studentów na zajęciach.
Powiązane efekty kierunkowe:
I1A_U09_02
Powiązane efekty obszarowe:
T1A_U09
Profil ogólnoakademicki - kompetencje społeczne
- Efekt K01_01
- Zna ograniczenia własnej wiedzy i rozumie potrzebę kształcenia się.
Weryfikacja: Kolokwium (W1-W10, C1-C10), Egzamin (W1-W10), obserwacja aktywności studentów na zajęciach.
Powiązane efekty kierunkowe:
I1A_K01_01
Powiązane efekty obszarowe:
T1A_K01