- Nazwa przedmiotu:
- Wstęp do Uczenia Maszynowego
- Koordynator przedmiotu:
- dr hab. inż. Przemysław Biecek, prof. PW
- Status przedmiotu:
- Obowiązkowy
- Poziom kształcenia:
- Studia I stopnia
- Program:
- Matematyka i Analiza Danych
- Grupa przedmiotów:
- Wspólne
- Kod przedmiotu:
- 1120-MD000-LSP-0352
- Semestr nominalny:
- 5 / rok ak. 2023/2024
- Liczba punktów ECTS:
- 5
- Liczba godzin pracy studenta związanych z osiągnięciem efektów uczenia się:
- 1. godziny kontaktowe – 65 h; w tym
a) obecność na wykładach – 30 h
b) obecność na ćwiczeniach – 0 h
c) obecność na laboratoriach – 30 h
d) konsultacje – 5 h
2. praca własna studenta – 40 h; w tym
a) przygotowanie do laboratoriów i zadań praktycznych – 30 h
b) zapoznanie się z literaturą – 10 h
Razem 105 h, co odpowiada 4 pkt. ECTS
- Liczba punktów ECTS na zajęciach wymagających bezpośredniego udziału nauczycieli akademickich:
- a) obecność na wykładach – 30 h
b) obecność na ćwiczeniach – 0 h
c) obecność na laboratoriach – 30 h
d) konsultacje – 5 h
Razem 65 h, co odpowiada 2 pkt. ECTS
- Język prowadzenia zajęć:
- polski
- Liczba punktów ECTS, którą student uzyskuje w ramach zajęć o charakterze praktycznym:
- a) obecność na laboratoriach – 30 h
b) rozwiązywanie do laboratoriów i zadań praktycznych – 30 h
Razem 60 h, co odpowiada 2 pkt. ECTS
- Formy zajęć i ich wymiar w semestrze:
-
- Wykład30h
- Ćwiczenia0h
- Laboratorium30h
- Projekt0h
- Lekcje komputerowe0h
- Wymagania wstępne:
- Wstęp do eksploracji danych, Statystyka Matematyczna
- Limit liczby studentów:
- .
- Cel przedmiotu:
- Celem przedmiotu jest praktyczne i teoretyczne opanowanie przez studentów podstawowych metod i algorytmów uczenia maszynowego.
- Treści kształcenia:
- 1. Zadanie klasyfikacji. Dokładność / błąd klasyfikacji. Zbiór uczący i testowy, kroswalidacja.
2. Krzywe ROC.
3. Regresja logistyczna.
4. Drzewa decyzyjne.
5. Komitety klasyfikatorów: bagging, lasy losowe.
6. Komitety klasyfikatorów: AdaBoost, gradient boosting.
7. Maszyny wektorów podpierających.
8. Metody jądrowe.
9. Inne metody klasyfikacji: naiwny klasyfikator bayesowski, metoda najbliższych sąsiadów.
10. Sieci neuronowe 1.
11. Sieci neuronowe 2.
12. Analiza skupień: metoda k-średnich, metody hierarchiczne.
13. Analiza skupień: affinity propagation.
14. Podstawy teorii uczenia: model PAC, skończone przestrzenie hipotez.
15. Podstawy teorii uczenia: wymiar VC.
- Metody oceny:
- Praca na laboratoriach: 30%, praktyczne zadania dotyczące uczenia maszynowego 70 %
- Egzamin:
- nie
- Literatura:
- 1. Christopher Bishop, Pattern Recognition and Machine Learning
2. materiały z wykładów
- Witryna www przedmiotu:
- .
- Uwagi:
- .
Efekty uczenia się
Profil ogólnoakademicki - wiedza
- Charakterystyka WUM_W01
- Absolwent zna współczesne biblioteki służące do uczenia maszynowego, przede wszystkim pakiety scikit-learn oraz R
Weryfikacja: Praca na laboratoriach
Powiązane charakterystyki kierunkowe:
MAD1_W14
Powiązane charakterystyki obszarowe:
I.P6S_WG, I.P6S_WK, II.X.P6S_WG.2
- Charakterystyka WUM_W02
- Absolwent zna podstawowe metody uczenia maszynowego takie jak drzewa decyzyjne, komitety, regresję. Zna pojęcia przeuczenia klasi generalizacji. Zna miary jakości modelu takie jak krzywa ROC. Rozumie pojęcie analizy skupień. Zna podstawy teorii uczenia maszynowego.
Weryfikacja: Ćwiczenia wykonywane na laboratoriach, zadania praktyczne
Powiązane charakterystyki kierunkowe:
MAD1_W17, MAD1_W18, MAD1_W19, MAD1_W21
Powiązane charakterystyki obszarowe:
I.P6S_WG, I.P6S_WK, II.X.P6S_WG.2, II.X.P6S_WG.1
Profil ogólnoakademicki - umiejętności
- Charakterystyka WUM_U01
- Absolwent umie zbudować model uczenia maszynowego przy użyciu wybranego pakietu. Umie poprawnie ocenić zdolność generalizacji modelu. Umie modyfikować model tak by zwiększyć jego efektywność.
Weryfikacja: Rozwiązania praktycznych zadań uczenia maszynowego
Powiązane charakterystyki kierunkowe:
MAD1_U18, MAD1_U19, MAD1_U20, MAD1_U21, MAD1_U11, MAD1_U13, MAD1_U15
Powiązane charakterystyki obszarowe:
II.X.P6S_UW.1.o, II.X.P6S_UW.2, I.P6S_UW, I.P6S_UK, I.P6S_UO