Nazwa przedmiotu:
Algebra liniowa
Koordynator przedmiotu:
dr Katarzyna Matczak
Status przedmiotu:
Obowiązkowy
Poziom kształcenia:
Studia I stopnia
Program:
Technologia Chemiczna
Grupa przedmiotów:
Wspólne dla wydziału
Kod przedmiotu:
WS1A_05
Semestr nominalny:
1 / rok ak. 2023/2024
Liczba punktów ECTS:
3
Liczba godzin pracy studenta związanych z osiągnięciem efektów uczenia się:
Wykłady: liczba godzin według planu studiów - 15, zapoznanie ze wskazaną literaturą - 3, przygotowanie do zaliczenia - 7, razem - 25; Ćwiczenia: liczba godzin według planu studiów - 15, przygotowanie do zajęć - 15, zapoznanie ze wskazaną literaturą - 1, przygotowanie do zaliczenia - 4, przygotowanie do kolokwium - 15, razem - 50; Razem - 75
Liczba punktów ECTS na zajęciach wymagających bezpośredniego udziału nauczycieli akademickich:
Wykłady - 15 h, Ćwiczenia - 15 h; Razem - 30 h = 1,2 ECTS
Język prowadzenia zajęć:
polski
Liczba punktów ECTS, którą student uzyskuje w ramach zajęć o charakterze praktycznym:
0
Formy zajęć i ich wymiar w semestrze:
  • Wykład15h
  • Ćwiczenia15h
  • Laboratorium0h
  • Projekt0h
  • Lekcje komputerowe0h
Wymagania wstępne:
Limit liczby studentów:
wykład min-15 studentów, Ćwiczenia 20-30 studentów.
Cel przedmiotu:
Celem przedmiotu jest uzyskanie przez studenta wiedzy, umiejętności i kompetencji społecznych w zakresie: algebry liniowej i geometrii analitycznej w przestrzeni kartezjańskiej. Poszerzenie zbioru liczbowego do ciała liczb zespolonych. Zapoznanie studentów z działaniami na liczbach zespolonych w postaci algebraicznej, trygonometrycznej i wykładniczej. Wprowadzenie działań na wektorach w przestrzeni i przedstawienie ich interpretacji. Umiejętność badania wzajemnego położenie punktów, prostych i płaszczyzn w przestrzeni. Przedstawienie różnych metod rozwiązywania układów równań liniowych o stałych współczynnikach.
Treści kształcenia:
W1 -Działanie dwuargumentowe w zbiorze i jego własności. Przykłady grup skończonych. W2- Podstawowe struktury algebraiczne: grupa, pierścień, ciało i przestrzeń liniowa. W3-Ciała liczb rzeczywistych i zespolonych. W4-Postać trygonometryczna liczby zespolonej. Potęgowanie i pierwiastkowanie liczb zespolonych. Działania na liczbach zespolonych w postaci wykładniczej. W5-Pierwiastki zespolone z liczby 1. Zasadnicze twierdzenie algebry.W6-Działania na macierzach. W7-Wyznacznik macierzy kwadratowej i jego własności.W8-Macierz odwrotna. Równanie macierzowe. W9-Układ Cramera. Sposoby rozwiązywania układu Cramera. W10-Rząd macierzy. Twierdzenie Kroneckera-Capellego. Metoda eliminacji Gaussa. W11- Działania na wektorach w przestrzeni. W12- Interpretacja i zastosowania działań na wektorach. W13- Równanie prostej i równanie płaszczyzny w przestrzeni. W14- Wzajemne położenie punktów, prostych i płaszczyzn w przestrzeni. W15- Krzywe i powierzchnie stopnia drugiego w przestrzeni. C1 -Sprawdzanie własności działań. Kongruencja "mod n" w zbiorze liczb całkowitych. Przykłady grup skończonych.C2-Sprawdzanie spełniania aksjomatów grupy, pirścienia, ciała i przestrzeni liniowej w danej strkturze. C3-Wykonywanie działań na liczbach zespolonych w postaci algebraicznej. C4-Potęgowanie i pirwiastkowanie liczb zespolonych w postaci trygonometrycznej. Działania na liczbach zespolonych w postaci wykładniczej.C5-Rozwiązywanie równań wielomianowych w dziedzinie zespolonej. C6-Wykonywanie działań na macierzach. C7-Powtórzenie ćwiczeń C1-C6. C8-Rozwiązywanie równań macierzowych. C9-Rozwiązywa nie układów Cramera.C10- Badanie rzędu macierzy. Rozwiązywanie układów równań liniowych o stałych współczynnikach.C11-Wykonywnie działań na wektorach i ich interpretacja geometryczna. C12-Wyznaczanie równania prostej i równania płaszczyzny. Zastosowanie do rozwiązywania zadań. C13-Rozwiązywanie zadań. Wzajemne położenie punktów, prostych i płaszczyzn w przestrzeni. C14-Powtórzenie ćwiczeń C8-C13. C15-Klasyfikacja i rysowanie powierzchni stopnia drugiego w przestrzeni.
Metody oceny:
zgodnie z regulaminem przedmiotu
Egzamin:
nie
Literatura:
1) T.Jurlewicz, Z. Skoczylas "Algebra liniowa 1", Przykłady i zadania GiS Wrocław 2004, 2) H. Łubowicz, B. Wieprzkowicz "Matematyka", Oficyna wydawnicza PW, Warszawa 1999, 3) A. Białynicki-Birula "Algebra liniowa z geometrią", PWN Warszawa 1979, 4) G. Banaszak, W. Gajda, "Elementy algebry liniowej" część I, II, WNT, Warszawa 2002, 5) L. Smith "Linear algebra", third edition, Springer, 1998.
Witryna www przedmiotu:
-
Uwagi:
Program studiów opracowany na podstawie programu nauczania zmodyfikowanego w ramach Zadania 8 Programu NERW.

Efekty uczenia się

Profil ogólnoakademicki - wiedza

Charakterystyka W01
Zna aksjomatykę podstawowych struktur algebraicznych. Podaje przykłady: grupy, pierścienia, ciała i przestrzeni liniowej. Posiada uporządkowaną wiedzę w zakresie podstawowych pojęć algebry liniowej i geometrii analitycznej w przestrzeni.
Weryfikacja: Kolokwium, obserwacja aktywności studentów na zajęciach.
Powiązane charakterystyki kierunkowe: C1A_W01
Powiązane charakterystyki obszarowe: I.P6S_WG.o

Profil ogólnoakademicki - umiejętności

Charakterystyka U10
Umie korzystać z rachunku macierzowego, rozwiązywać układy równań liniowych oraz bada położenie punktów, prostych i płaszczyzn w przestrzeni. Potrafi działać na liczbach zespolonych w postaciach: algebraicznej, trygonometrycznej i wykładniczej.
Weryfikacja: Kolokwium, obserwacja aktywności studentów na zajęciach.
Powiązane charakterystyki kierunkowe: C1A_U10
Powiązane charakterystyki obszarowe: III.P6S_UW.o

Profil ogólnoakademicki - kompetencje społeczne

Charakterystyka K01
Zna ograniczenia własnej wiedzy i rozumie potrzebę kształcenia się.
Weryfikacja: Kolokwium, obserwacja aktywności studentów na zajęciach.
Powiązane charakterystyki kierunkowe: C1A_K01
Powiązane charakterystyki obszarowe: I.P6S_KK