- Nazwa przedmiotu:
- Projektowanie konstrukcji z zastosowaniem programów komputerowych
- Koordynator przedmiotu:
- dr inż., Marcin Niedośpiał
- Status przedmiotu:
- Obowiązkowy
- Poziom kształcenia:
- Studia II stopnia
- Program:
- Budownictwo
- Grupa przedmiotów:
- Obowiązkowe
- Kod przedmiotu:
- 1080-BUKBD-MSP-0408
- Semestr nominalny:
- 3 / rok ak. 2022/2023
- Liczba punktów ECTS:
- 2
- Liczba godzin pracy studenta związanych z osiągnięciem efektów uczenia się:
- Razem 55 godz. = 2 ECTS: ćwiczenia laboratoryjne (praca przy komputerze) 45 godzin; przygotowanie do zajęć w trakcie semestru oraz prace zaliczeniowe 10 godz.
- Liczba punktów ECTS na zajęciach wymagających bezpośredniego udziału nauczycieli akademickich:
- Razem 55 godz. = 2 ECTS: ćwiczenia laboratoryjne (praca przy komputerze) 45 godz., konsultacje prac projektowych i ich zaliczenie 10h
- Język prowadzenia zajęć:
- polski
- Liczba punktów ECTS, którą student uzyskuje w ramach zajęć o charakterze praktycznym:
- Razem 60 godz. = 2 ECTS: ćwiczenia laboratoryjne (praca przy komputerze) 45 godzin; przygotowanie do zajęć w trakcie semestru 5godz., konsultacje i prace zaliczeniowe 15 godzin.
- Formy zajęć i ich wymiar w semestrze:
-
- Wykład0h
- Ćwiczenia45h
- Laboratorium0h
- Projekt0h
- Lekcje komputerowe0h
- Wymagania wstępne:
- Przedmiot prowadzony jest na ostatnim lub przedostatnim semestrze zajęć. Zakłada się, że studenci zaliczyli przedmioty konstrukcyjne (konstrukcje żelbetowe, metalowe, drewniane) prowadzone na poprzedzających semestrach, gdyż przedmiot ten w pewien sposób podsumowuje wiedzę zdobytą podczas toku studiów.
- Limit liczby studentów:
- 20
- Cel przedmiotu:
- Celem przedmiotu jest omówienie podstawowych zasad dotyczących modelowania konstrukcji, definicji obciążeń i ich kombinacji , obliczeń statycznych, interpretacji wyników oraz wymiarowania w programie Autodesk Robot Structural Analysis Professional. Po zaliczeniu przedmiotu student powinien umieć zastosować zdobytą wiedzę w praktyce do projektowania oraz przy pracy dyplomowej.
- Treści kształcenia:
- • Wspomaganie komputerowe projektowania konstrukcji - zagadnienia wprowadzające; klasyfikacja ustrojów konstrukcyjnych; model obliczeniowy budowli - pojęcia, charakterystyka, ograniczenia; program komputerowy jako realizacja przyjętego algorytmu rozwiązania modelu numerycznego budowli.
• Ustawienia programu - preferencje zadania, materiały, normy, dokładność, jednostki itp.
• Obciążenia konstrukcji - przypadki obciążeń, definicje obciążeń: obciążenia powierzchniowe i liniowe, kombinacje ręczne i automatyczne, okładziny.
• Konstrukcje prętowe – płaskie i przestrzenne; definicja prętów, modelowanie połączeń (węzłów) i podpór, materiały, charakterystyki przekroju, funkcje zaawansowane konstrukcji prętowych.
• Konstrukcje powierzchniowe - definicja geometrii płyt: definicja konturów, otwory, definicja grubości i materiału; podpory w płytach żelbetowych (podpory punktowe, liniowe, powierzchniowe, słupy, wymiary podpór); siatkowanie konstrukcji płytowych – siatkowanie Coonsa i Delauney’a, dogęszczanie siatki (ręczne i automatyczne - emitery), siatka regularna, analiza zbieżności wyników dla różnych gęstości siatek.
• Rezultaty dla konstrukcji prętowych i płytowych – interpretacja rezultatów, rezultaty tabelaryczne sił, przemieszczeń i reakcji; wykresy sił, przemieszczeń i reakcji; mapy, izolinie i wartości w elementach skończonych, przecięcia przez panele, uwzględnienie rozmiaru podpór słupowych w rezultatach.
• Wymiarowanie elementów stalowych i żelbetowych – parametry normowe, definicje grup i prętów, konfiguracja obliczeń; zbrojenie elementów żelbetowych – definicja parametrów zbrojenia, zbrojenie teoretyczne i rzeczywiste, weryfikacja ugięcia elementu zarysowanego.
• Współpraca elementów prętowych z powierzchniowymi – wpływ zmiany sztywności podparcia na wyniki statyki i ugięcia (offsety itp.), wpływ siatkowania ES na rezultaty nad słupami.
• Problemy występujące podczas analizy konstrukcji – analiza liniowa i nieliniowa, analiza modalna, niespójności, zmiana parametrów brzegowych.
- Metody oceny:
- Należy uczęszczać i aktywnie uczestniczyć w zajęciach.
Student jest zobowiązany do wykonania prac domowych (projektów zaliczeniowych), które należy zakończyć i obronić w terminie określonym w regulaminie przedmiotu – ocena zależy od jakości projektów i obrony.
- Egzamin:
- nie
- Literatura:
- Strona internetowa firmy ROBOBAT www.robobat.com.pl
Materiały własne szkoleniowe.
"Help" programu
- Witryna www przedmiotu:
- -
- Uwagi:
Efekty uczenia się
Profil ogólnoakademicki - wiedza
- Charakterystyka W1
- Zna możliwości i zakres stosowania programu ARSA Pro, zna zasady modelowania konstrukcji prętowych i powierzchniowych
Weryfikacja: uczestnictwo w zajęciach; wykonanie i obrona domowych prac projektowych.
Powiązane charakterystyki kierunkowe:
K2_W04, K2_W05, K2_W15_KB, K2_W09
Powiązane charakterystyki obszarowe:
P7U_W, I.P7S_WG.o, III.P7S_WG
Profil ogólnoakademicki - umiejętności
- Charakterystyka U1
- Potrafi zbudować przestrzenny układ prętowy, układ powierzchniowy, zdefiniować obciążenia i ich kombinacje, przeprowadzić obliczenia, zinterpretować otrzymane wyniki.
Weryfikacja: aktywne uczestnictwo w zajęciach; wykonanie i obrona domowych prac projektowych.
Powiązane charakterystyki kierunkowe:
K2_U05, K2_U15_KB, K2_U17_KB, K2_U19_KB, K2_U03, K2_U04
Powiązane charakterystyki obszarowe:
I.P7S_UW.o, P7U_U, III.P7S_UW.o, I.P7S_UO
Profil ogólnoakademicki - kompetencje społeczne
- Charakterystyka K1
- Umie pracować samodzielnie i w zespole nad realizacją zadania.
Weryfikacja: Ćwiczenie projektowe
Powiązane charakterystyki kierunkowe:
K2_K02, K2_K03
Powiązane charakterystyki obszarowe:
P7U_K, I.P7S_KK