Nazwa przedmiotu:
Matematyka - wybrane działy (BD, DS, KB, MiBP)
Koordynator przedmiotu:
prof. dr hab. inż. Roman Nagórski, profesor
Status przedmiotu:
Obowiązkowy
Poziom kształcenia:
Studia II stopnia
Program:
Budownictwo
Grupa przedmiotów:
Obowiązkowe
Kod przedmiotu:
1080-BU000-MSP-0300
Semestr nominalny:
1 / rok ak. 2022/2023
Liczba punktów ECTS:
5
Liczba godzin pracy studenta związanych z osiągnięciem efektów uczenia się:
Razem 150 godz.(5 ECTS): udział w zajęciach 75 godz. (2,5 ECTS), przygotowanie do sprawdzianów pisemnych 45 godz. (1,5 ECTS), wykonanie prac domowych 30 godz. (1,0 ECTS)
Liczba punktów ECTS na zajęciach wymagających bezpośredniego udziału nauczycieli akademickich:
Razem 75 godz. (2,5 ECTS): wykład 30 godz. + 2 godz. egzamin (1,0 ECTS), ćwiczenia 45 godz. (1,5 ECTS)
Język prowadzenia zajęć:
polski
Liczba punktów ECTS, którą student uzyskuje w ramach zajęć o charakterze praktycznym:
Razem 75 godz. (2,5 ECTS): udział w ćwiczeniach 45 godz. (1,5 ECTS), wykonanie prac domowych 30 godz. (1,0 ECTS)
Formy zajęć i ich wymiar w semestrze:
  • Wykład30h
  • Ćwiczenia45h
  • Laboratorium0h
  • Projekt0h
  • Lekcje komputerowe0h
Wymagania wstępne:
Znajomość matematyki z zakresu szkoły średniej i matematyki z zakresu studiów I stopnia.
Limit liczby studentów:
bez limitu
Cel przedmiotu:
Znajomość podstawowych pojęć algebry liniowej, znajomość podstawowa równań różniczkowych i probabilistyki oraz umiejętność wykorzystania tej wiedzy do analiz technicznych i rozwiązania problemów technicznych dotyczących specjalności.
Treści kształcenia:
Część pierwsza. Podstawowe pojęcia algebry liniowej: 1. Przestrzenie liniowe – konwencja sumacyjna, pojęcie przestrzeni liniowej, przestrzenie skończenie wymiarowe, baza algebraiczna, przestrzenie unormowane, przestrzenie unitarne, baza hilbertowska, przestrzeń euklidesowa. 2. Odwzorowania liniowe i wieloliniowe - odwzorowania liniowe, funkcjonały liniowe, operatory liniowe, . odwzorowania wieloliniowe, formy dwuliniowe, produkt dualny, tensory. Część druga. Szeregi trygonometryczne Fouriera: 3. Ortogonalność, zupełność, zamkniętość układów trygonometrycznych. 4. Rozwinięcia funkcji w trygonometryczne szeregi Fouriera. 5. Twierdzenia Dirichleta o zbieżności trygonometrycznych szeregów Fouriera. Część trzecia. Równania różniczkowe i zagadnienia graniczne: 6. Równania różniczkowe zwyczajne o zmiennych rozdzielonych, równania liniowe (o stałych współczynnikach, Eulera) oraz metody ich całkowania - zagadnienie Cauchy’ego, zagadnienie początkowe, zagadnienie brzegowe. 7. Równania różniczkowe cząstkowe liniowe rzędu pierwszego (informacyjnie) i drugiego - zagadnienie Cauchy'ego zagadnienie początkowe, zagadnienie brzegowe, zagadnienie brzegowo-początkowe (sformułowania klasyczne i wybrane sformułowania nieklasyczne). Część czwarta. Probabilistyka: 8. Rachunek prawdopodobieństwa - przestrzeń zdarzeń, pojecie prawdopodobieństwa, przestrzeń probabilistyczna. 9. Zmienne losowe jednowymiarowe i wielowymiarowe – zmienne losowe typu dyskretnego i ciągłego, charakterystyki funkcyjne i liczbowe (dystrybuanta, rozkład prawdopodobieństwa i gęstość prawdopodobieństwa, momenty, korelacja, regresja, funkcja charakterystyczna - przykłady rozkładów prawdopodobieństwa typu skokowego i ciągłego oraz ich charakterystyki), ciągi zmiennych losowych (pojęcia zbieżności, prawa wielkich liczb i centralne twierdzenia graniczne). 10. Elementy statystyki matematycznej – podstawowe pojęcia statystyki, estymacja (estymacja punktowa i przedziały ufności), weryfikacja hipotez (testy parametryczne i testy zgodności). Ćwiczenia: 1. Rozwiązywanie równań różniczkowych zwyczajnych pierwszego rzędu. 2. Rozwiązywanie równań różniczkowych zwyczajnych liniowych rzędu pierwszego, drugiego i wyższych rzędów, o stałych współczynnikach oraz równania Eulera o zmiennych współczynnikach. 3. Rozwiązywanie układów równań różniczkowych zwyczajnych liniowych o stałych współczynnikach. 4. Równania różniczkowe cząstkowe quasi-liniowe pierwszego rzędu – metoda charakterystyk, zagadnienie Cauchy’ego 5. Badanie typu równania różniczkowego cząstkowego rzędu drugiego i sprowadzanie do postaci kanonicznej. 6. Równania różniczkowe cząstkowe liniowe drugiego rzędu typu eliptycznego - zastosowanie pojedynczych i podwójnych szeregów Fouriera. 7. Równania różniczkowe cząstkowe liniowe drugiego rzędu typu hiperbolicznego i parabolicznego – rozwiązywanie zagadnień początkowych, metoda d’Alemberta i metoda potencjału. 8. Równania różniczkowe cząstkowe liniowe drugiego rzędu typu hiperbolicznego i parabolicznego – rozwiązywanie zagadnień brzegowo-początkowych, metoda rozdziału zmiennych. 9. Równania różniczkowe cząstkowe wyższych rzędów – przykłady zagadnień granicznych i ich rozwiązań. 10. Nieklasyczne sformułowania zagadnień granicznych – przykłady rozwiązań. 11. Podstawowe pojęcia i twierdzenia rachunku prawdopodobieństwa – przykłady wyznaczania prawdopodobieństwa zdarzeń. 12. Zmienne losowe jedno i dwuwymiarowe – wyznaczanie rozkładów prawdopodobieństwa oraz charakterystyk dla typowych (standardowych) rozkładów. 13. Elementy statystyki matematycznej – szacowanie statystyczne (estymacja). 14-15. Elementy statystyki matematycznej – testowanie hipotez statystycznych.
Metody oceny:
1. Trzy sprawdziany z przyswojenia wiadomości (S1 z cz. 1 i 2, S2 z cz. 3 oraz S3 z cz. 4). 2. Wykonanie 2 prac domowych (indywidualne 2 zestawy po dwa zadania: Z1 z cz. 1 i cz. 3-RRZ oraz Z2 z cz. 3-RRC i cz. 4).
Egzamin:
tak
Literatura:
[1] Nagórski R.: Wybrane zagadnienia matematyki, preskrypt (w pdf), IDiM WIL Warszawa 2018; [2] Kącki E. – Równania różniczkowe cząstkowe w zagadnieniach fizyki i techniki. WN-T. Warszawa; [3] Plucińska A., Pluciński E. – Elementy probabilistyki. PWN, Warszawa.
Witryna www przedmiotu:
http://wektor.il.pw.edu.pl/~zmtnds/
Uwagi:

Efekty uczenia się

Profil ogólnoakademicki - wiedza

Charakterystyka W1
Ma podstawową wiedzę o przestrzeniach liniowych oraz odwzorowaniach liniowych, z teorii szeregów Fouriera, z równań różniczkowych zwyczajnych i cząstkowych, ze szczególnym wyróżnieniem równań liniowych oraz z rachunku prawdopodobieństwa i statystyki matematycznej
Weryfikacja: Sprawdziany wiedzy ogólnej
Powiązane charakterystyki kierunkowe: K2_W01
Powiązane charakterystyki obszarowe: P7U_W, I.P7S_WG.o

Profil ogólnoakademicki - umiejętności

Charakterystyka U1
Posiada umiejętność formułowania i rozwiązywania podstawowych zagadnień granicznych dla równań różniczkowych
Weryfikacja: Wykonanie samodzielne prac domowych (indywidualnego zestawu zadań)
Powiązane charakterystyki kierunkowe: K2_U01, K2_U06
Powiązane charakterystyki obszarowe: I.P7S_UW.o, P7U_U
Charakterystyka U2
Posiada umiejętność analiz danych technicznych metodami probabilistycznymi
Weryfikacja: Wykonanie samodzielne pracy domowej - rozwiązanie indywidualnego zadania
Powiązane charakterystyki kierunkowe: K2_U01, K2_U05
Powiązane charakterystyki obszarowe: P7U_U, I.P7S_UW.o

Profil ogólnoakademicki - kompetencje społeczne

Charakterystyka K1
Posiada umiejętność prezentacji rozwiązań zagadnień matematycznych
Weryfikacja: Przedstawienie do oceny prac domowych
Powiązane charakterystyki kierunkowe: K2_K03
Powiązane charakterystyki obszarowe: P7U_K, I.P7S_KK