Nazwa przedmiotu:
Geometria i algebra liniowa
Koordynator przedmiotu:
dr Jarosław Sobczyk, adiunkt, Wydział Matematyki i Nauk Informacyjnych, Zakład Procesów Stochastycznych i Matematyki Finansowej
Status przedmiotu:
Obowiązkowy
Poziom kształcenia:
Studia I stopnia
Program:
Transport
Grupa przedmiotów:
Obowiązkowe
Kod przedmiotu:
Semestr nominalny:
1 / rok ak. 2022/2023
Liczba punktów ECTS:
4
Liczba godzin pracy studenta związanych z osiągnięciem efektów uczenia się:
120 godz., w tym: praca na wykładach 30 godz., praca na ćwiczeniach audytoryjnych 30 godz., studiowanie literatury przedmiotu 10 godz., samodzielne rozwiązywanie zadań 20 godz., konsultacje 3 godz., przygotowanie się do kolokwiów 10 godz., przygotowanie się do egzaminu 15 godz., udział w egzaminie 2 godz.
Liczba punktów ECTS na zajęciach wymagających bezpośredniego udziału nauczycieli akademickich:
2,5 pkt. ECTS (65 godz., w tym: praca na wykładach 30 godz., praca na ćwiczeniach audytoryjnych 30 godz., konsultacje 3 godz., udział w egzaminie 2 godz.).
Język prowadzenia zajęć:
polski
Liczba punktów ECTS, którą student uzyskuje w ramach zajęć o charakterze praktycznym:
0
Formy zajęć i ich wymiar w semestrze:
  • Wykład30h
  • Ćwiczenia30h
  • Laboratorium0h
  • Projekt0h
  • Lekcje komputerowe0h
Wymagania wstępne:
brak
Limit liczby studentów:
Wykład: 100 osób, ćwiczenia audytoryjne: 30 osób.
Cel przedmiotu:
Nabycie podstawowej wiedzy z zakresu algebry i geometrii niezbędnej w dalszym toku studiów. Wykształcenie umiejętności formułowania i rozwiązywania problemów matematycznych z zakresu wiedzy inżynierskiej.
Treści kształcenia:
Wykład: Elementy logiki matematycznej, podstawowe działania logiczne, tautologie, funkcje zdaniowe, kwantyfikatory, elementy teorii mnogości, pojęcie zbioru, działania na zbiorach, zbiory otwarte i domknięte, iloczyn kartezjański zbiorów, relacje i funkcje, relacje równoważności i klasy abstrakcji, działania nieskończone, indukcja matematyczna, ciało liczb zespolonych, definicja liczby zespolonej i działań, sprzężenie, moduł i postać trygonometryczna liczby zespolonej, interpretacja geometryczna liczby zespolonej, wyznaczanie pierwiastka kwadratowego z liczby zespolonej, wzory Moivrea na wyznaczanie potęgi i pierwiastka liczby zespolonej, wielomiany i równania algebraiczne na ciele liczb zespolonych, zasadnicze twierdzenie algebry, pierwiastki równań algebraicznych o współczynnikach rzeczywistych, wzory Eulera, macierze i wyznaczniki, macierz jako operator liniowy, pojęcie wyznacznika i jego własności, rozwinięcie Laplace'a, zastosowanie operacji niezmienniczych dla wyznacznika do obliczania wyznaczników, działania na macierzach, pojecie macierzy odwrotnej i jej wyznaczanie, algebra macierzy, twierdzenie Cauchyego dla macierzy i jego zastosowania, pojęcie rzędu macierzy i jego wyznaczanie, układy równań liniowych, twierdzenie Cramera i wyznaczanie rozwiązania układu równań poprzez odwracanie macierzy, metoda eliminacji Gaussa,, rozwiązanie układów równań jednorodnych, twierdzenie Kroneckera-Capelliego, rozwiązywanie układów równań liniowych z parametrem, przestrzenie metryczne, definicja i przykłady, pojęcie grupy i pierścienia, przestrzenie wektorowe, definicja i przykłady, liniowa niezależność wektorów, baza i wymiar przestrzeni, podprzestrzeń liniowa p,w, związek wymiaru podprzestrzeni liniowej p,w, z rzędem macierzy, przestrzeń euklidesowa n-wymiarowa, wektory związane i wektory swobodne, iloczyn skalarny, wektory prostopadłe i równoległe, kąt pomiędzy wektorami, rzut wektora na zadany kierunek, definicja i wyznaczanie iloczynu wektorowego, jego zastosowania w geometrii, iloczyn mieszany, pojęcie hiperpłaszczyzny, wektor, prosta i płaszczyzna w przestrzeni euklidesowej 2 i 3-wymiarowej, podstawowe własności, wyznaczenie kątów i odległości, krzywe stożkowe, definicja i własności, zastosowania w mechanice i optyce, powierzchnie stopnia drugiego. Ćwiczenia audytoryjne: Dowodzenie podstawowych twierdzeń logiki i algebry zbiorów, wykorzystanie kwantyfikatorów do formułowania twierdzeń matematycznych, dowodzenie twierdzeń metodą indukcji matematycznej, obliczanie wyrażeń arytmetycznych w dziedzinie zespolonej, wyznaczanie postaci trygonometrycznej, potęgi naturalnej i pierwiastków liczby zespolonej, wyznaczanie pierwiastków równań algebraicznych w dziedzinie zespolonej, obliczanie wyznaczników dowolnego stopnia, wykonywanie działań na macierzach, wyznaczanie macierzy odwrotnej oraz rzędu macierzy, rozwiązywanie układów równań liniowych oraz równań liniowych z parametrami, zastosowanie wiedzy z dziedziny przestrzeni wektorowych do rozwiązywania zadań z geometrii analitycznej, wyznaczanie wzajemnego położenia prostych i płaszczyzn w przestrzeni euklidesowej, opis prostych i płaszczyzn w przestrzeni 2 i 3 wymiarowych, zastosowanie wiedzy o krzywych stożkowych do rozwiązywania zadań z planimetrii
Metody oceny:
Wykład: egzamin pisemny, 5 zadań otwartych, wymagane jest uzyskanie ponad 50% punktów. Ćwiczenia audytoryjne: 2 kolokwia pisemne po 4 zadania otwarte, wymagane jest uzyskanie ponad 50% punktów. Ocena zintegrowana: średnia arytmetyczna ocen z poszczególnych form zajęć.
Egzamin:
tak
Literatura:
1) Leitner R., Zarys matematyki wyższej, część I, WNT, Warszawa; 2) Leitner R., Matuszewski W., Rojek Z., Zadania z matematyki wyższej, część I, WNT, Warszawa (podstawowy zbiór zadań); 3) Stankiewicz W., Zadania z matematyki dla wyższych uczelni technicznych, część I, PWN, Warszawa; 4) Jurlewicz T., Skoczylas Z., Algebra liniowa I, Oficyna Wydawnicza GiS, Wrocław.
Witryna www przedmiotu:
www.wt.pw.edu.pl
Uwagi:
O ile nie powoduje to zmian w zakresie powiązań danego przedmiotu z efektami uczenia się określonymi dla programu studiów w treściach kształcenia mogą być wprowadzane na bieżąco zmiany związane z uwzględnieniem najnowszych osiągnięć naukowych.

Efekty uczenia się

Profil ogólnoakademicki - wiedza

Charakterystyka W01
Posiada wiedzę w zakresie algebry, w szczególności: algebry liniowej, elementów logiki i algebry abstrakcyjnej, ciała liczb zespolonych, rachunku macierzowego, układów równań liniowych
Weryfikacja: 4 zadania na 1 kolokwium, 5 zadania na egzaminie, wymagane jest uzyskanie ponad 50% punktów
Powiązane charakterystyki kierunkowe: Tr1A_W01
Powiązane charakterystyki obszarowe: P6U_W, I.P6S_WG.o
Charakterystyka W02
Posiada wiedzę w zakresie geometrii analitycznej, w szczególności: przestrzeni wektorowych, podprzestrzeni liniowych i hiperpłaszczyzn, krzywych i powierzchni stopnia drugiego
Weryfikacja: 4 zadania na 2 kolokwium, 5 zadania na egzaminie, wymagane jest uzyskanie ponad 50% punktów
Powiązane charakterystyki kierunkowe: Tr1A_W01
Powiązane charakterystyki obszarowe: P6U_W, I.P6S_WG.o

Profil ogólnoakademicki - umiejętności

Charakterystyka U01
Potrafi wykonać działania na liczbach zespolonych i macierzach, rozwiązywać równania w dziedzinie zespolonej oraz rozwiązywać układy równań z wykorzystaniem macierzy
Weryfikacja: 4 zadania na 1 kolokwium, 5 zadania na egzaminie, wymagane jest uzyskanie ponad 50% punktów
Powiązane charakterystyki kierunkowe: Tr1A_U11
Powiązane charakterystyki obszarowe: P6U_U, I.P6S_UW.o, III.P6S_UW.o
Charakterystyka U02
Potrafi wykonać działania na macierzach, rozwiązywać układy równań z wykorzystaniem macierzy
Weryfikacja: 4 zadania na 2 kolokwium, 5 zadania na egzaminie, wymagane jest uzyskanie ponad 50% punktów
Powiązane charakterystyki kierunkowe: Tr1A_U11
Powiązane charakterystyki obszarowe: P6U_U, I.P6S_UW.o, III.P6S_UW.o