- Nazwa przedmiotu:
- Podstawy nowoczesnych metod cyfrowej analizy danych
- Koordynator przedmiotu:
- dr inż. Maciej Trusiak
- Status przedmiotu:
- Fakultatywny dowolnego wyboru
- Poziom kształcenia:
- Studia II stopnia
- Program:
- Mechatronika
- Grupa przedmiotów:
- Wariantowe
- Kod przedmiotu:
- PAD
- Semestr nominalny:
- 1 / rok ak. 2021/2022
- Liczba punktów ECTS:
- 2
- Liczba godzin pracy studenta związanych z osiągnięciem efektów uczenia się:
- 1) Liczba godzin bezpośrednich 33, w tym:
a) wykład - 15h;
b) ćwiczenia - 0h;
c) laboratorium - 0h;
d) projekt - 15h;
e) konsultacje - 3h;
2) Praca własna studenta 30, w tym:
a) przygotowanie do kolokwiów zaliczeniowych - 10h;
b) opracowanie samodzielne raportu i przygotowanie prezentacji - 15h;
c) przygotowanie do projektu - 4h;
d) studia literaturowe - 1h;
Suma: 63 h (2 ECTS)
- Liczba punktów ECTS na zajęciach wymagających bezpośredniego udziału nauczycieli akademickich:
- 1 punkt ECTS - liczba godzin bezpośrednich: 33, w tym:
a) wykład - 15h;
b) ćwiczenia - 0h;
c) laboratorium - 0h;
d) projekt - 15h;
e) konsultacje - 3h;
- Język prowadzenia zajęć:
- polski
- Liczba punktów ECTS, którą student uzyskuje w ramach zajęć o charakterze praktycznym:
- 1) Liczba godzin bezpośrednich 33, w tym:
a) wykład - 15h;
b) ćwiczenia - 0h;
c) laboratorium - 0h;
d) projekt - 15h;
e) konsultacje - 3h;
2) Praca własna studenta 30, w tym:
a) przygotowanie do kolokwiów zaliczeniowych - 10h;
b) opracowanie samodzielne raportu i przygotowanie prezentacji - 15h;
c) przygotowanie do projektu - 4h;
d) studia literaturowe - 1h;
Suma: 63 h (2 ECTS)
- Formy zajęć i ich wymiar w semestrze:
-
- Wykład15h
- Ćwiczenia0h
- Laboratorium0h
- Projekt15h
- Lekcje komputerowe0h
- Wymagania wstępne:
- Podstawowa wiedza w zakresie algebry i analizy matematycznej (kurs inżynierski matematyki); Podstawy programowania (najlepiej Matlab); Podstawy przetwarzania sygnałów i cyfrowej analizy obrazów.
- Limit liczby studentów:
- 30
- Cel przedmiotu:
- Zapoznanie się z nowoczesnymi narzędziami przetwarzania i analizy danych jednowymiarowych (1D, czasowych) i dwuwymiarowych (2D, obrazów) oraz ich wybranymi zastosowaniami w dziedzinach nauki i techniki (np. analiza danych biomedycznych i technicznych etc.), nabycie praktycznej umiejętności analizy danych 1D/2D z wykorzystanie metod omawianych w toku wykładu (w tym doboru odpowiedniej metody do zadania).
- Treści kształcenia:
- Zakres wykładu (15h): założenia, cele i problemy analizy danych 1D i 2D (m.in. akwizycja danych, konwersja analogowo-cyfrowa, próbkowanie, detektory, dostępne oprogramowanie, rozkład sygnału na jego składowe i ich interpretacja) oraz reprezentacja sygnału w dziedzinie częstotliwości; klasyczne rozwiązania cyfrowej analizy danych w dziedzinie sygnału i w dziedzinie częstotliwości (np. prosta filtracja splotowa i transformacja Fouriera); ograniczenia metod podstawowych i podstawy wybranych nowoczesnych rozwiązań cyfrowej analizy danych, m.in., okienkowa transformacja Fouriera, transformacja falkowa, dekompozycja modów empirycznych, metody interpolacji i aproksymacji danych, dekonwolucja; nowe drogi rozwoju komputerowej analizy danych np. nowoczesne metody redukcji szumu (np. block-matching 3D). Wybrane zastosowania w nauce, technice i przemyśle metod analizy danych 1D – sygnałów czasowych oraz metody analizy danych 2D - obrazów (np. analiza danych biomedycznych, analiza danych z fal grawitacyjnych, pomiar kształtu mikroobiektów statycznych i dynamicznych, analiza struktury przezroczystych obiektów biologicznych etc.). W trakcie omawiania nowoczesnych metod analizy danych podawane będą przykłady ich implementacji w środowisku Matlab.
Dwa kolokwia.
Projekt (15h): Każdy student otrzyma artykuł naukowy na podstawie którego przygotuje raport i prezentację. Artykuły będą dotyczyć różnych zastosowań omawianych na wykładzie nowoczesnych metod analizy danych (np. redukcji szumu koherentnego w cyfrowej holografii z wykorzystaniem algorytmu block-matching 3D lub fuzji obrazów z kamery podczerwonej i wizyjnej). Raport powinien zawierać opis problemu i użytej metody oraz dyskusję uzyskanych wyników połączoną z krytyczną oceną ograniczeń metody. Dodatkowo w skład raportu powinna wchodzić część obliczeniową z wykorzystaniem metody numerycznej w środowisku Matlab i analizą przykładowych danych. W skład oceny z projektu wchodzi ocena za raport (ocenia prowadzący) i ocena za prezentację (oceniają wszyscy słuchacze na kartach ewaluacyjnych).
- Metody oceny:
- Kolokwium z treści wykładowych (50%), Ocena z projektu (50%)
- Egzamin:
- nie
- Literatura:
- R. Gonzalez, R. Woods, Digital Image Processing, Prentice Hall, 2018 ()
Marques, Oge, Practical image and video processing using MATLAB®, Florida Atlantic University Wiley 2011
Artykuły naukowe udostępniane przez prowadzącego.
- Witryna www przedmiotu:
- -
- Uwagi:
- brak
Efekty uczenia się
Profil ogólnoakademicki - wiedza
- Charakterystyka PAD_2st_W01
- Zna wybrane nowoczesne metody cyfrowej analizy sygnału/obrazu
Weryfikacja: Zaliczenie dwóch kolokwiów z materiału omawianego na wykładzie
Powiązane charakterystyki kierunkowe:
K_W07, K_W13, K_W06
Powiązane charakterystyki obszarowe:
I.P7S_WG.o, P7U_W
- Charakterystyka PAD_2st_W02
- Zna i rozumie ograniczenia metod podstawowych cyfrowej analizy danych oraz zna i rozumie zalety wybranych metod zaawansowanych.
Weryfikacja: Zaliczenie dwóch kolokwiów z materiału omawianego na wykładzie
Powiązane charakterystyki kierunkowe:
K_W08, K_W09
Powiązane charakterystyki obszarowe:
P7U_W, I.P7S_WG.o, III.P7S_WG
Profil ogólnoakademicki - umiejętności
- Charakterystyka PAD_2st_U01
- Potrafi zaprojektować i zaimplementować algorytmy przetwarzania sygnału/obrazu w języku Matlab
Weryfikacja: Zaliczenie projektu
Powiązane charakterystyki kierunkowe:
K_U01, K_U04, K_U05, K_U10
Powiązane charakterystyki obszarowe:
P7U_U, I.P7S_UW.o, I.P7S_UK, I.P7S_UU, III.P7S_UW.o
- Charakterystyka PAD_2st_U02
- Potrafi dobrać właściwą ścieżkę przetwarzania danych cyfrowych i ocenić jej ograniczenia
Weryfikacja: Zaliczenie projektu
Powiązane charakterystyki kierunkowe:
K_U13
Powiązane charakterystyki obszarowe:
P7U_U, I.P7S_UW.o, III.P7S_UW.o
Profil ogólnoakademicki - kompetencje społeczne
- Charakterystyka PAD2st_K01
- Rozumie potrzebę ciągłego samorozwoju w obszarze algorytmów metod przetwarzania danych oraz doszkalania się w zakresie ciągle rozwijających się narzędzi numerycznych
Weryfikacja: Zaliczenie projektu
Powiązane charakterystyki kierunkowe:
K_K01
Powiązane charakterystyki obszarowe:
P7U_K, I.P7S_KK