- Nazwa przedmiotu:
- Matematyka 1
- Koordynator przedmiotu:
- mgr inż. Rafał Maj
- Status przedmiotu:
- Obowiązkowy
- Poziom kształcenia:
- Studia I stopnia
- Program:
- Inżynieria Środowiska
- Grupa przedmiotów:
- obowiązkowe
- Kod przedmiotu:
- 1110-ISIKU-IZP-1201
- Semestr nominalny:
- 1 / rok ak. 2021/2022
- Liczba punktów ECTS:
- 7
- Liczba godzin pracy studenta związanych z osiągnięciem efektów uczenia się:
- Wykład - 16 godzin
Ćwiczenia - 24 godziny
Przygotowanie do ćwiczeń - 35 godzin
Zapoznanie się z literaturą - 25 godzin
Przygotowanie do kolokwiów - 25 godzin
Przytotwanie od egzaminu - 35 godzin
Razem - 175 godzin
- Liczba punktów ECTS na zajęciach wymagających bezpośredniego udziału nauczycieli akademickich:
- 1,3
- Język prowadzenia zajęć:
- polski
- Liczba punktów ECTS, którą student uzyskuje w ramach zajęć o charakterze praktycznym:
- nie dotyczy
- Formy zajęć i ich wymiar w semestrze:
-
- Wykład15h
- Ćwiczenia30h
- Laboratorium0h
- Projekt0h
- Lekcje komputerowe0h
- Wymagania wstępne:
- Znajomość materiału z matematyki ze szkoły średniej w zakresie podstawowym (liczby rzeczywiste, wyrażenia algebraiczne, równania i nierówności, funkcje, ciągi, trygonometria, planimetria, goemetria analityczna płaska)
- Limit liczby studentów:
- Cel przedmiotu:
- Przedstawienie podstawowych wiadomości z algebry liniowej i geometrii analitycznej przestrzennej. Przedstawienie podstawowych wiadomości z rachunku różniczkowego funkcji rzeczywistej jednej i dwóch zmiennych rzeczywistych.
- Treści kształcenia:
- Program wykładu
Bloki tematyczne (treści)
Wstęp. Powtórzenie materiału ze szkoły średniej. Zbiór liczb rzeczywistych, równania i nierówności, logika i rachunek zbiorów.
Macierze i zastosowania do rozwiązywania układów równań liniowych. Macierze – definicja, rodzaje, działania z własnościami. Wyznaczniki – definicja permutacyjna, własności, rozwinięcia Laplace’a. Rząd macierzy i jego obliczanie. Macierz odwrotna – definicja i jej obliczanie, równania macierzowe. Układy równań liniowych – definicja, zapis macierzowy, metody rozwiązywania (twierdzenie Kroneckera-Capelliego, metoda eliminacji Jordana-Gaussa).
Podstawy geometrii analitycznej przestrzennej. Iloczyny wektorów: skalarny, wektorowy i mieszany – definicje, obliczanie. Różne równania płaszczyzny i prostej w przestrzeni. Badanie wzajemnych relacji między płaszczyznami i prostymi. Wzory na odległość punktu od płaszczyzny, punktu od prostej oraz między prostymi skośnymi. Uwagi o powierzchniach drugiego stopnia, równania powierzchni obrotowych.
Elementy algebry liniowej. Przestrzeń wektorowa, pojęcie liniowej zależności i niezależności wektorów – ich badanie, pojęcie bazy i wymiaru, przykłady. Przekształcenie liniowe i jego reprezentacja macierzowa, równanie charakterystyczne, wartości i wektory własne. Formy kwadratowe, własności i sprowadzanie do postaci kanonicznej.
Rachunek różniczkowy funkcji jednej zmiennej rzeczywistej. Ciągi liczbowe – zbieżność, rozbieżność, warunki konieczne i dostateczne. Rachunek na nieskończonościach – symbole nieoznaczone. Liczba e (szkic wyprowadzenia), funkcje exp, ln i cyklometryczne – wykresy. Granice i ciągłość funkcji liczbowej, własności funkcji ciągłej. Pochodna – definicja, interpretacja, pochodne wyższych rzędów. Obliczanie pochodnych. Podstawowe twierdzenia rachunku różniczkowego: Cauchy’ego, Taylora (Maclaurina) oraz Lagrange’a, Rolle’a wraz z interpretacją i zastosowaniami. Reguła de l’Hospitala – zastosowania do wyznaczania asymptot funkcji. Badanie funkcji liczbowej w przedziale: monotoniczność a znak pochodnej, wypukłość a znak drugiej pochodnej, definicja ekstremum lokalnego i globalnego oraz punktu przegięcia – warunki dostateczne istnienia ekstremum lokalnego i punktu przegięcia. Zastosowania do rozwiązywania problemów ekstremalnych w technice.
Program ćwiczeń audytoryjnych:
Bloki tematyczne (treści)
Powtórzenie ze szkoły średniej
Macierze, rozwiązywanie układów równań liniowych
Podstawy geometrii analitycznej przestrzennej
Elementy algebry liniowej
Rachunek różniczkowy funkcji jednej zmiennej rzeczywistej
- Metody oceny:
- Zaliczenie ćwiczeń - uzyskanie miminum 20 pkt z 40 pkt możliwych do uzyskania z kolokwiów.
Zaliczenie wykładu - uzyskanie minumum 50 pkt ze 100 pkt możliwych od uzyskania na egzaaminie (40 pkt - Ćwiczenia, 40 pkt - egzamin zadaniowy, 20 pkt - egzamin teoretyczny).
- Egzamin:
- tak
- Literatura:
- 1. D. Witczyńska, K. Witczyński: Wybrane zagadnienia z algebry liniowej i geometrii.Oficyna Wydawnicza Politechniki Warszawskiej, Wyd. 3 (popr. i uzup.), 2001.
2. A. M. Kaczyński: Podstawy analizy matematycznej. Rachunek różniczkowy. Tom 1. Oficyna Wydawnicza Politechniki Warszawskiej, Wyd. 2, 2006.
3. A. M. Kaczyński: Ćwiczenia z podstaw matematyki wyższej, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2013
- Witryna www przedmiotu:
- https://moodle.usos.pw.edu.pl/course/view.php?id=525
- Uwagi:
- -
Efekty uczenia się
Profil ogólnoakademicki - wiedza
- Charakterystyka W01
- Posiada uporządkowaną wiedzę z podstaw logiki matematycznej, algebry liniowej i geometrii analitycznej w przestrzeni. Posiada elementarną wiedzę z podstaw rachunku różniczkowego funkcji liczbowej. Zna podstawowe pojęcia rachunku różniczkowego funkcji 2 zmiennych.
Weryfikacja: poprawne wykonanie obliczeń, zaliczenie kolokwium, egzamin zadaniowy i teoretyczny
Powiązane charakterystyki kierunkowe:
IS_W01
Powiązane charakterystyki obszarowe:
P6U_W, I.P6S_WG.o
Profil ogólnoakademicki - umiejętności
- Charakterystyka U01
- Potrafi formułować problemy w termianach macierzy wraz z wykonywaniem na nich operacji, w szczególności zna metody rozwiązywania układów równań liniowych. Widzi zastosowania teorii w badaniu podstawowych tworów geometrycznych oraz odwzorowaniach liniowych. Potrafi wykonywać działania na macierzach, rozwiązywać układy równań liniowych. Potrafi wyznaczać rówanania płaszczyzn i prostych w przestrzeni. Potrafi badać własności ciągów liczbowych i ich zbieżność, obliczać pochodne funkcji rzeczywistych, badać przebieg zmienności funkcji z zastosowaniem rachunku różniczowego. Umie wyznaczać pochodne cząstkowe funkcji dwóćh zmiennych.
Weryfikacja: poprawne wykonanie obliczeń, zaliczenie kolokwium, egzamin zadaniowy i teoretyczny
Powiązane charakterystyki kierunkowe:
IS_U01
Powiązane charakterystyki obszarowe:
P6U_U, I.P6S_UW.o, III.P6S_UW.o
Profil ogólnoakademicki - kompetencje społeczne
- Charakterystyka K01
- Ma rozwinięte zdolności do abstrakcyjnego myślenia oraz systematycznego, konsekwentnego i rzetelnego podejścia do rozwiązywanych problemów. Potrafi pozyskiwać informacje z zalecanej literatury i innych źródeł; rozumie rolę jaką odgrywa matematyka przy rozwiązywaniu probelemów technicznych.
Weryfikacja: poprawne wykonanie zadań obliczeniowych, zaliczenie kolokwium, egzamin zadaniowy i teoretyczny
Powiązane charakterystyki kierunkowe:
IS_K01, IS_K03
Powiązane charakterystyki obszarowe:
P6U_K, I.P6S_KK, I.P6S_KR