- Nazwa przedmiotu:
- Matematyka - Rachunek prawdopodobieństwa i statystyka
- Koordynator przedmiotu:
- dr inż. Ewa FRANKIEWICZ
- Status przedmiotu:
- Obowiązkowy
- Poziom kształcenia:
- Studia I stopnia
- Program:
- Inżynieria Biomedyczna
- Grupa przedmiotów:
- Obowiązkowe
- Kod przedmiotu:
- MAT3
- Semestr nominalny:
- 3 / rok ak. 2019/2020
- Liczba punktów ECTS:
- 5
- Liczba godzin pracy studenta związanych z osiągnięciem efektów uczenia się:
- 1). Liczba godzin bezpośrednich - 65, w tym:
• wykłady:30 godz,
• ćwiczenia: 30 godz.,
• egzamin: 2 godz.
• konsultacje: 3 godz.
2) Praca własna studenta – 70 godz., w tym:
• przygotowanie do ćwiczeń (rozwiązanie kilku zadań z udostępnionych zestawów): 20 godz.,
• przygotowanie do kolokwiów (rozwiązanie samodzielne odpowiedniej liczby zadań): 30 godz.,
• przygotowanie do egzaminu (powtórzenie teorii, przejrzenie notatek z ćwiczeń, rozwiązanie udostępnionych zestawów zadań z poprzednich egzaminów): 20 godz.,
RAZEM 135 godzin - 5 ECTS
- Liczba punktów ECTS na zajęciach wymagających bezpośredniego udziału nauczycieli akademickich:
- 2,5 punktu ECTS -: 65,
w tym:
• wykłady:30 godz,
• ćwiczenia: 30 godz.,
• egzamin: 2 godz.
• konsultacje: 3 godz.
- Język prowadzenia zajęć:
- polski
- Liczba punktów ECTS, którą student uzyskuje w ramach zajęć o charakterze praktycznym:
- 3 punkty ECTS- 80 godzin,
w tym:
• ćwiczenia: 30 godz.,
• przygotowanie do ćwiczeń (rozwiązanie kilku zadań z udostępnionych zestawów): 20 godz.,
• przygotowanie do kolokwiów (rozwiązanie samodzielne odpowiedniej liczby zadań): 30 godz.,
- Formy zajęć i ich wymiar w semestrze:
-
- Wykład30h
- Ćwiczenia30h
- Laboratorium0h
- Projekt0h
- Lekcje komputerowe0h
- Wymagania wstępne:
- Znajomość rachunku różniczkowego i całkowego funkcji jednowymiarowych i dwuwymiarowych; znajomość działań na macierzach.
- Limit liczby studentów:
- Cel przedmiotu:
- Zapoznanie studentów z podstawowymi pojęciami z rachunku prawdopodobieństwa i statystyki matematycznej mogącymi mieć zastosowanie w badaniach biologicznych i medycznych; ukształtowanie umiejętności wyznaczania prawdopodobieństwa zdarzeń losowych, parametrów zmiennych losowych oraz analizowania danych statystycznych.
- Treści kształcenia:
- Treść wykładu : 1. Model probabilistyczny - podstawy. (4h) - przestrzeń probabilistyczna - własności prawdopodobieństwa - przykłady określania prawdopodobieństwa: przeliczalny zbiór zdarzeń elementarnych, prawdopodobieństwo klasyczne
i geometryczne - definicja prawdopodobieństwa warunkowego, wzór na prawdopodobieństwo całkowite, wzór Bayesa - niezależność zdarzeń
2. Jednowymiarowe zmienne losowe (6h) - zmienne losowe jednowymiarowe o rozkładach dyskretnych
i ciągłych - wybrane rozkłady jednowymiarowe - charakterystyki liczbowe zmiennych losowych jednowymiarowych 3. Zmienne losowe dwuwymiarowe (4h) - zmienne losowe dwuwymiarowe o rozkładach dyskretnych i ciągłych - niezależność zmiennych losowych - dwuwymiarowy rozkład jednostajny i normalny - charakterystyki liczbowe dwuwymiarowych zmiennych losowych 4. Twierdzenia graniczne (2h) 5. Elementy statystyki opisowej (10h) - wskaźniki położenia i rozproszenia w próbie - graficzne przedstawienie danych - metody wyznaczania estymatorów - przedziały ufności - metody weryfikacji hipotez statystycznych - badanie współzależności zmiennych losowych 6. Wprowadzenie do procesów stochastycznych (4h) - łańcuchy Markowa, procesy urodzin i śmierci - szeregi czasowe Zakres ćwiczeń: 1. Wyznaczanie prawdopodobieństwa za pomocą definicji klasycznej i geometrycznej oraz w przypadku przeliczalnej przestrzeni zdarzeń elementarnych.(2h) 2. Obliczanie prawdopodobieństwa warunkowego, wykorzystanie wzoru na prawdopodobieństwo całkowite i wzoru Bayesa.(2h) 3. Wyznaczanie rozkładów zmiennych losowych jednowymiarowych oraz obliczanie prawdopodobieństw związanych z tymi zmiennymi.(4h) 4. Obliczanie wartości oczekiwanych
i wariancji zmiennych losowych jedno-wymiarowych.(3h) 5. Wyznaczanie rozkładów zmiennych losowych dwuwymiarowych oraz prawdopodobieństw związanych z tymi zmiennymi, wyznaczanie rozkładów brzegowych, badanie niezależności zmiennych losowych. (4h) 6. Obliczanie parametrów związanych ze zmiennymi losowymi dwuwymiarowymi.(3h) 7. Obliczanie prawdopodo-bieństwa za pomocą centralnego twierdzenia granicznego. (2h) 8. Wyznaczanie wskaźników położenia i rozproszenia dla próby losowej oraz ich interpretacja. (2h) 9. Wyznaczanie estymatorów oraz przedziałów ufności. (5h) 10. Testowanie hipotez statystycznych. (3h)
- Metody oceny:
- 3 kolokwia, egzamin
- Egzamin:
- tak
- Literatura:
- Literatura podstawowa:
1. J.Jakubowski, R.Sztencel, Rachunek prawdopodobieństwa dla (prawie) każdego, SCRIPT
2. J.Koronacki, J.Mielniczuk, Statystyka dla studentów kierunków technicznych i przyrodniczych, WNT
3. W.Krysicki, J.Bartos, W.Dyczka, K.Królikowska, M.Wasilewski, Rachunek prawdopodobieństwa
i statystyka matematyczna w zadaniach, część I i II, PWN
4. A.Plucińska, E.Pluciński, Probabilistyka, WNT 5. A.Sosnowski, E.Stankiewicz-Wiechno, P.Szabłowski, Metody probabilistyczne w przykładach i zadaniach, WPW
Literatura uzupełniająca:
1. U.Foryś, Matematyka w biologii, WNT
- Witryna www przedmiotu:
- Uwagi:
Efekty uczenia się
Profil ogólnoakademicki - wiedza
- Charakterystyka MAT3_W01
- Zna podstawowe własności i sposoby obliczania prawdopodobieństwa, rozumie pojęcie niezależności zdarzeń; zna i rozumie pojęcie zmiennej losowej jednowymiarowej i jej rozkładu; posiada wiedzę na temat parametrów zmiennych losowych jednowymiarowych; zna podstawowe przykłady ilustrujące poznane pojęcia.
Weryfikacja: egzamin, kolokwium1
Powiązane charakterystyki kierunkowe:
K_W01
Powiązane charakterystyki obszarowe:
I.P6S_WG.o, P6U_W
- Charakterystyka MAT3_W2
- Zna i rozumie pojęcie zmiennej losowej dwuwymiarowej, rozkładu łącznego i rozkładu brzegowego, niezależności zmiennych losowych; posiada wiedzę na temat charakterystyk liczbowych zmiennych losowych dwuwymiarowych; zna podstawowe przykłady ilustrujące poznane pojęcia.
Weryfikacja: kolokw2, egzamin
Powiązane charakterystyki kierunkowe:
K_W01
Powiązane charakterystyki obszarowe:
P6U_W, I.P6S_WG.o
- Charakterystyka MAT3_W3
- Zna podstawowe twierdzenia graniczne; zna zagadnienie regresji liniowej; zna podstawowe wskaźniki położenia i rozproszenia dla próby losowej, zna podstawowe metody estymacji
i testowania hipotez statystycznych; zna podstawowe przykłady ilustrujące poznane pojęcia
Weryfikacja: kolokw3, egzamin
Powiązane charakterystyki kierunkowe:
K_W01
Powiązane charakterystyki obszarowe:
P6U_W, I.P6S_WG.o
- Charakterystyka MAT3_W4
- Posiada podstawową wiedzę na temat łańcuchów Markowa i szeregów czasowych.
Weryfikacja: egzamin
Powiązane charakterystyki kierunkowe:
K_W01
Powiązane charakterystyki obszarowe:
P6U_W, I.P6S_WG.o
Profil ogólnoakademicki - umiejętności
- Charakterystyka MAT3_U01
- Potrafi zbudować matematyczny model eksperymentu losowego; potrafi obliczać prawdopodobieństwa zdarzeń losowych przy wykorzystaniu poznanych metod; umie stosować wzór na prawdopodobieństwo całkowite i wzór Bayesa; potrafi wyznaczać rozkłady i parametry zmiennych losowych jednowymiarowych; zna praktyczne zastosowania podstawowych rozkładów.
Weryfikacja: kolokwium 1, egzamin
Powiązane charakterystyki kierunkowe:
K_U06
Powiązane charakterystyki obszarowe:
I.P6S_UW.o, III.P6S_UW.o
- Charakterystyka MAT3_U2
- Potrafi wyznaczać łączne rozkłady zmiennych losowych dwuwymiarowych i ich rozkłady brzegowe; umie wyznaczać i interpretować parametry zmiennych losowych dwuwymiarowych.
Weryfikacja: kolokwium 2, egzamin
Powiązane charakterystyki kierunkowe:
K_U06
Powiązane charakterystyki obszarowe:
I.P6S_UW.o, III.P6S_UW.o
- Charakterystyka MAT3_U3
- Potrafi wykorzystać twierdzenia graniczne do szacowania prawdopodobieństwa; potrafi wyznaczać i interpretować wskaźniki sumaryczne dla próby losowej; umie wyznaczać estymatory za pomocą metody największej wiarogodności oraz metody momentów, potrafi wyznaczać przedziały ufności; potrafi weryfikować hipotezy statystyczne.
Weryfikacja: kolokwium 3, egzamin
Powiązane charakterystyki kierunkowe:
K_U06
Powiązane charakterystyki obszarowe:
I.P6S_UW.o, III.P6S_UW.o
- Charakterystyka MAT3_U4
- potrafi podać przykłady zastosowań łańcuchów Markowa np. do opisu doświadczeń genetycznych.
Weryfikacja: egzamin
Powiązane charakterystyki kierunkowe:
K_U06
Powiązane charakterystyki obszarowe:
I.P6S_UW.o, III.P6S_UW.o