Nazwa przedmiotu:
Mechanika Płynów III
Koordynator przedmiotu:
Prof. dr hab. inż. Andrzej Styczek
Status przedmiotu:
Obowiązkowy
Poziom kształcenia:
Studia I stopnia
Program:
Energetyka
Grupa przedmiotów:
Obowiązkowe
Kod przedmiotu:
ML.NK341
Semestr nominalny:
4 / rok ak. 2018/2019
Liczba punktów ECTS:
2
Liczba godzin pracy studenta związanych z osiągnięciem efektów uczenia się:
1) Liczba godzin kontaktowych - 32, w tym: a) udział w wykładach - 18 godz., b) udział w ćwiczeniach - 12 godz., c) konsultacje - 2 godz. 2) Praca własna studenta - 22 godz., w tym: a) przygotowanie do kolokwium : 2*5 godz.= 10 godz., b) przygotowanie do egzaminu (w tym konsultacje): 12 godz. Razem: 52 godz.
Liczba punktów ECTS na zajęciach wymagających bezpośredniego udziału nauczycieli akademickich:
1,3 punktu ECTS – 32 godziny kontaktowe, w tym: a) udział w wykładach - 18 godz., b) udział w ćwiczeniach - 12 godz., c) konsultacje - 2 godz.
Język prowadzenia zajęć:
polski
Liczba punktów ECTS, którą student uzyskuje w ramach zajęć o charakterze praktycznym:
-
Formy zajęć i ich wymiar w semestrze:
  • Wykład15h
  • Ćwiczenia15h
  • Laboratorium0h
  • Projekt0h
  • Lekcje komputerowe0h
Wymagania wstępne:
Mechanika Płynów I.
Limit liczby studentów:
Wykład - 150, ćwiczenia - 30/grupa
Cel przedmiotu:
Zapoznanie z podstawami teoretycznymi mechaniki przepływów ściśliwych, metodami wyznaczania stacjonarnych przepływów gazu w przewodach i dyszach oraz wybranymi zagadnieniami aerodynamiki klasycznej (przepływy potencjalne, warstwa przyścienna).
Treści kształcenia:
1. Równanie energii: wyprowadzenie, interpretacja członów, funkcja dyssypacji. 2. Całka pierwsza równania energii, równanie Crocco. 3. Dynamika małych zaburzeń, przybliżenie akustyczne, prędkość dźwięku i liczba Macha. 4. Izentropowy i adiabatyczny przepływ gazu: podstawowe związki, parametry spiętrzenia i krytyczne, przykłady zastosowania. 5. Prostopadła fala uderzeniowa. 6. Ruch ustalony gazu z przewodzie o zmiennym przekroju. Dysza Lavala. 7. Ruch ustalony gazu przez przewód z wymianą ciepła. 8. Ruch ustalony gazu przez przewód z tarciem. 9. Jednowymiarowe ruchy nieustalone płynu ściśliwego, metoda charakterystyk i niezmienniki Riemanna, fale proste i powstawanie fal uderzeniowych, przykłady zastosowań. 10. Płaski przepływ potencjalny i elementy teorii warstwy przyściennej.
Metody oceny:
2 kolokwia, na zakończenie semestru egzamin końcowy. Wymagane jest zaliczenie obydwu kolokwiów.
Egzamin:
tak
Literatura:
Zalecana literatura: 1. Notatki wykładowe prowadzącego przedmiot. 2. Gryboś R.: Podstawy mechaniki płynów, PWN, Warszawa, 1998. 3. Szumowski A., Selerowicz W., Piechna J.: Dynamika gazów. Wydawnictwa Politechniki Warszawskiej, Warszawa, 1988. Dodatkowa literatura: 1. Prosnak W.J.: Mechanika płynów, tom 2. PWM, Warszawa, 1970. 2. Materiały internetowe polecone przez instruktora kursu.
Witryna www przedmiotu:
-
Uwagi:
-

Efekty uczenia się

Profil ogólnoakademicki - wiedza

Efekt ML.NK341_W1
Zna podstawowe pojęcia i związki termodynamiczne związane z opisem ruchu gazu doskonałego.
Weryfikacja: Kolokwium 1, egzamin.
Powiązane efekty kierunkowe: E1_W05, E1_W06
Powiązane efekty obszarowe: T1A_W02, T1A_W03, T1A_W07, T1A_W02, T1A_W03
Efekt ML.NK341_W2
Posiada podstawową wiedzę teoretyczną w zakresie stacjonarnych przepływów (ciągłych i z falą uderzeniową) gazu w przewodach o zmiennym przekroju, zna podstawowe modele inżynierskie jednowymiarowego ruchu gazu w przewodzie w wymiana ciepła lub tarciem,
Weryfikacja: Kolokwium 1, egzamin.
Powiązane efekty kierunkowe: E1_W05, E1_W06
Powiązane efekty obszarowe: T1A_W02, T1A_W03, T1A_W07, T1A_W02, T1A_W03
Efekt ML.NK341_W3
Ma elementarną wiedzę o metodzie charakterystyk i jej zastosowaniu do opisu zjawisk falowych z niestacjonarnym jednowymiarowym ruchu gazu doskonałego.
Weryfikacja: Kolokwium 2, egzamin.
Powiązane efekty kierunkowe: E1_W05, E1_W06
Powiązane efekty obszarowe: T1A_W02, T1A_W03, T1A_W07, T1A_W02, T1A_W03
Efekt ML.NK341_W4
Zna ogólną metodę konstruowania pola potencjalnego przepływu zewnętrznego i rozumie znaczenie fizyczne warunku Kutty-Żukowskiego.
Weryfikacja: Egzamin.
Powiązane efekty kierunkowe: E1_W05, E1_W06
Powiązane efekty obszarowe: T1A_W02, T1A_W03, T1A_W07, T1A_W02, T1A_W03
Efekt ML.NK341_W5
Zna podstawy teorii laminarnej warstwy przyściennej w płynie nieściśliwym, zna podstawowe charakterystyki ilościowe przepływu w warstwie przyściennej, zna warunki wystąpienia oderwania.
Weryfikacja: Egzamin.
Powiązane efekty kierunkowe: E1_W06
Powiązane efekty obszarowe: T1A_W02, T1A_W03

Profil ogólnoakademicki - umiejętności

Efekt ML.NK341_U1
Potrafi wyznaczyć parametry ruchu gazu wykorzystując związki termodynamiczne (przedstawione w formie graficznej) oraz odpowiednie formy równania energii.
Weryfikacja: Kolokwium 1, egzamin.
Powiązane efekty kierunkowe: E1_U11, E1_U12, E1_U22
Powiązane efekty obszarowe: T1A_U09, T1A_U09, T1A_U09, T1A_U14
Efekt ML.NK341_U2
Potrafi rozwiązać proste zadania obliczeniowe dotyczące wyznaczania ruchu gazu w dyszy zbieżnej i dyszy Lavala oraz ruchu w przewodzie z tarciem lub wymianą ciepła.
Weryfikacja: Kolokwium 1, egzamin.
Powiązane efekty kierunkowe: E1_U11, E1_U12, E1_U22
Powiązane efekty obszarowe: T1A_U09, T1A_U09, T1A_U09, T1A_U14
Efekt ML.NK341_U3
Potrafi rozwiązać najprostsze przypadki jednowymiarowych przepływów niestacjonarnych stosując metodę charakterystyk.
Weryfikacja: Kolokwium 2, egzamin.
Powiązane efekty kierunkowe: E1_U11, E1_U12, E1_U22
Powiązane efekty obszarowe: T1A_U09, T1A_U09, T1A_U09, T1A_U14
Efekt ML.NK341_U4
Potrafi obliczyć wybrane charakterystyki dwuwymiarowej laminarnej warstwy przyściennej, a także omówić ogólnie zjawisko oderwania.
Weryfikacja: Kolokwium 2, egzamin.
Powiązane efekty kierunkowe: E1_U11, E1_U22
Powiązane efekty obszarowe: T1A_U09, T1A_U09, T1A_U14
Efekt ML.NK341_U5
Potrafi wyznaczyć pole prędkości, ciśnienie i siły aerodynamiczne w prostych przypadkach dwuwymiarowych przepływów potencjalnych płynu nieściśliwego.
Weryfikacja: Kolokwium 2, egzamin.
Powiązane efekty kierunkowe: E1_U11, E1_U22
Powiązane efekty obszarowe: T1A_U09, T1A_U09, T1A_U14