Nazwa przedmiotu:
Materiały dla elektroniki/ Materials for Electronics
Koordynator przedmiotu:
prof. dr hab. inż. Krzysztof Zdunek
Status przedmiotu:
Obowiązkowy
Poziom kształcenia:
Studia II stopnia
Program:
Inżynieria Materiałowa
Grupa przedmiotów:
Kierunkowe
Kod przedmiotu:
MATDE
Semestr nominalny:
2 / rok ak. 2018/2019
Liczba punktów ECTS:
6
Liczba godzin pracy studenta związanych z osiągnięciem efektów uczenia się:
Wykład 45 godzin, Ćwiczenia laboratoryjne 45 godzin, praca własna studenta 60 godzin (przygotowanie się do wykładu, ćwiczeń laboratoryjnych, przygotowanie referatu). Razem 150 godzin = 6 punktów ECTS
Liczba punktów ECTS na zajęciach wymagających bezpośredniego udziału nauczycieli akademickich:
45 godzin wykład, 45 godzin ćwiczenia laboratoryjne, razem 90 godzin = 3 punkty ECTS
Język prowadzenia zajęć:
polski
Liczba punktów ECTS, którą student uzyskuje w ramach zajęć o charakterze praktycznym:
Ćwiczenia laboratoryjne 45 godzin, praca własna studenta 60 godzin (przygotowanie się do wykładu, ćwiczeń laboratoryjnych, przygotowanie referatu). Razem 105 godzin - 4 punkty ECTS.
Formy zajęć i ich wymiar w semestrze:
  • Wykład45h
  • Ćwiczenia0h
  • Laboratorium45h
  • Projekt0h
  • Lekcje komputerowe0h
Wymagania wstępne:
fizyka ogólna, fizyka i chemia ciała stałego w zakresie elektronicznych właściwości ciał stałych, inżynieria materiałowa, inżynieria powierzchni
Limit liczby studentów:
wykłądy - bez limitu, laboratoria 8-12 studentów
Cel przedmiotu:
1. Przekazanie studentom wiedzy o mechanizmach wzbudzania i transportu nośników ładunku elektrycznego w materiałach półprzewodnikowych, opisie struktury energetycznej nośników przy zastosowaniu modelu pasmowego oraz o sposobach oddziaływania na tą strukturę. Zapoznanie studentów ze współczesnymi trendami w konstrukcji, zastosowaniu i technologii przyrządów półprzewodnikowych, kryteriami doboru materiałów do wykonywania przyrządów elektronicznych, elementów MEMS i NOEMS (wykład). 2. Zaznajomienie studentów z nowoczesną technologią materiałów półprzewodnikowych i technologią przyrządów półprzewodnikowych oraz współczesnymi metodami charakteryzacji materiałów półprzewodnikowych stosowanymi we współpracującym z Wydziałem Inżynierii Materiałowej PW Instytucie Technologii Materiałów Elektronicznych w Warszawie (laboratorium).
Treści kształcenia:
1. Zdefiniowanie pojęć: materiały dla elektroniki, materiały półprzewodnikowe na gruncie prawa Ohma w odniesieniu do właściwości elementarnych materiału – sens pojęcia: przewodność właściwa. Ruch nośników w ciele stałym, efekt Halla. Sens i znaczenie modelu pasmowego w interpretacji właściwości elektronowych ciała stałego, masa efektywna, modele pasmowe rzeczywistych materiałów, prognoza materiałowa w oparciu o model pasmowy. Krzem, złożone materiały półprzewodnikowe – właściwości i zastosowania. Półprzewodnik samoistny i domieszkowany, generacja i rekombinacja ładunków, funkcja gęstości stanów, stany elektronowe – objętościowe i powierzchniowe, kinetyka elektronów – efekty rozproszeniowe, dyfuzja, unoszenie i tunelowanie nośników, efekt Gunna, efekt polowy, absorpcja i emisja światła. Supersieci półprzewodnikowe – podstawy fizyczne, znaczenie. Przyrządy półprzewodnikowe, układy MEMS, NOEMS, technologie przyrządów półprzewodnikowych (wykład). 2. Monokrystalizacja krzemu, związków półprzewodnikowych oraz materiałów tlenkowych. Obróbka mechaniczna monokryształów. Metody inżynierii powierzchni w zakresie technologii przyrządów półprzewodnikowych, epitaksja krzemu, epitaksja związków półprzewodnikowych. Technologie montażu przyrządów półprzewodnikowych. Metody elektryczne i optyczne charakteryzacji materiałów półprzewodnikowych oraz gotowych struktur. Światłowody – technologia, wyroby, zastosowania (laboratorium).
Metody oceny:
1. System zaliczenia premiuje aktywność, zainteresowanie tematyką i samodzielność pracy studenta. W skład systemu wchodzą: - uzyskanie oceny pozytywnej z zaliczenia końcowego (pisemnego lub ustnego w zależności od liczby studentów i wyboru prowadzącego, preferowana jest rozmowa oceniająca ustna), - ocena z samodzielnie przygotowanego i następnie wygłoszonego referatu. Ocena wiedzy prezentowanej podczas wykładu jest standardowym sposobem jego zaliczenia. Ocena z przygotowanego samodzielnie i wygłoszonego przez studenta referatu stanowić może istotną części oceny końcowej. W przypadku systematycznej obecności studenta na wykładach oraz jego zauważalnej merytorycznej aktywności podczas wykładów w trakcie całego semestru (pytania do prowadzącego podczas wykładu, problemy poruszane w pytaniach i komentarzach) podstawą zaliczenia przedmiotu może stać się wyłącznie ocena z wygłaszanego referatu (wykład). 2. Sporządzenie raportu z zajęć laboratoryjnych. Raport powinien zawierać wyszczególnienie wiadomości podstawowych i inżynierskich przekazywanych studentom podczas zajęć przez prowadzącego oraz delegowanych, współpracujących pracowników ITME. Zaliczenie raportu odbywa się poprzez jego obronę podczas indywidualnej rozmowy studenta z prowadzącym zajęcia. Rozmowa poprzedzona jest pisemnym sprawdzianem wszystkich studentów, którego zadaniem jest skontrolowanie zasobu wiedzy z przedmiotu (laboratorium).
Egzamin:
nie
Literatura:
1. Monografie i podręczniki z zakresu fizyki półprzewodników, artykuły w czasopismach naukowych (wykład). 2. Materiały wykładowe, materiały ITME (laboratorium).
Witryna www przedmiotu:
brak
Uwagi:

Efekty uczenia się

Profil ogólnoakademicki - wiedza

Efekt ME_W1
Ma wiedzę o mechanizmach wzbudzania i transportu nośników ładunku elektrycznego w materiałach półprzewodnikowych, opisie struktury energetycznej nośników przy zastosowaniu modelu pasmowego oraz o sposobach oddziaływania na tą strukturę
Weryfikacja: Rozmowa oceniająca lub sprawdzian pisemny
Powiązane efekty kierunkowe: IM2_W02, IM2_W11
Powiązane efekty obszarowe: T2A_W01, T2A_W07

Profil ogólnoakademicki - umiejętności

Efekt ME_U1
Posiada umiejętność obsługiwania urządzeń w zakresie technologii przyrządów półprzewodnikowych takich jak epitaksja krzemu i epitaksja związków półprzewodnikowych. Na podstawie posiadanej wiedzy i analizy fachowej literatury student umie rozwiązać przedstawiony problem badawczy, w tym opracować i prawidłowo zinterpretować otrzymane wyniki, wyciągnąć wnioski z przeprowadzonych badań. Przy opracowaniu raportu z przeprowadzonych badań i prezentacji korzysta z technik informacyjno-komunikacyjnych. Potrafi przedstawić na forum wyniki przeprowadzonych badań, prowadzić dyskusję z uczestnikami.
Weryfikacja: Prezentacja raportu z ćwiczeń laboratoryjnych
Powiązane efekty kierunkowe: IM2_U01, IM2_U02, IM2_U03, IM2_U04, IM2_U05, IM2_U07, IM2_U08, IM2_U13
Powiązane efekty obszarowe: T2A_U01, T2A_U02, T2A_U03, T2A_U04, T2A_U05, T2A_U07, T2A_U08, T2A_U12