Nazwa przedmiotu:
Matematyka I
Koordynator przedmiotu:
dr Wiesław Zarębski
Status przedmiotu:
Obowiązkowy
Poziom kształcenia:
Studia I stopnia
Program:
Biotechnologia
Grupa przedmiotów:
Obowiązkowe
Kod przedmiotu:
brak
Semestr nominalny:
1 / rok ak. 2018/2019
Liczba punktów ECTS:
8
Liczba godzin pracy studenta związanych z osiągnięciem efektów uczenia się:
1. godziny kontaktowe 120h, w tym: a) obecność na wykładach – 60h, b) obecność na ćwiczeniach – 60h 2. przygotowanie się do ćwiczeń – 20h 3. przygotowanie do kolokwiów – 60h 4. przygotowanie do egzaminu i obecność na egzaminie – 40h Razem nakład pracy studenta: 240h, co odpowiada 8 punktom ECTS.
Liczba punktów ECTS na zajęciach wymagających bezpośredniego udziału nauczycieli akademickich:
1. obecność na wykładach – 60h, 2. obecność na ćwiczeniach – 60h, Razem: 120h, co odpowiada 4 punktom ECTS.
Język prowadzenia zajęć:
polski
Liczba punktów ECTS, którą student uzyskuje w ramach zajęć o charakterze praktycznym:
0
Formy zajęć i ich wymiar w semestrze:
  • Wykład60h
  • Ćwiczenia60h
  • Laboratorium0h
  • Projekt0h
  • Lekcje komputerowe0h
Wymagania wstępne:
brak
Limit liczby studentów:
-
Cel przedmiotu:
Po ukończeniu kursu student powinien: • mieć ogólną wiedzę teoretyczną na temat metod matematycznych właściwych dla kierunku biotechnologia • nabyć umiejętności praktycznego wykorzystywania zdobytej wiedzy • nabyć umiejętność pracy indywidualnej, korzystania z literatury i zasobów internetowych. • nabyć umiejętność logicznego myślenia i wyciągania wniosków.
Treści kształcenia:
Przedmiot obejmuje następujące zagadnienia: Liczby rzeczywiste: przedziały liczbowe, zbiory ograniczone, kresy zbiorów, aksjomat ciągłości. Funkcje, ich własności, składanie funkcji. Funkcje odwrotne. Granica funkcji, twierdzenie o trzech funkcjach. Ciągłość funkcji, twierdzenia dotyczące funkcji ciągłych: tw. Weierstrassa, własność Darboux. Pochodna funkcji. Ekstrema lokalne. Twierdzenia dotyczące funkcji różniczkowalnych: tw. Rolle’a, tw. Cauchy’ego, tw. de l’Hospitala, tw. Lagrange’a, tw. Taylora. Pochodne wyższych rzędów. Wypukłość funkcji, punkty przegięcia. Badanie funkcji. Całka nieoznaczona i podstawowe metody całkowania: całkowanie przez podstawienie i przez części. Całkowanie funkcji wymiernych. Całkowanie funkcji trygonometrycznych. Całkowanie niektórych funkcji niewymiernych. Wzór Ostrogradskiego. Suma Riemanna. Całka Riemanna. Związek całki oznaczonej i nieoznaczonej. Przykłady zastosowania całki oznaczonej. Całka niewłaściwa. Równania różniczkowe zwyczajne. Równania o zmiennych rozdzielonych, równania jednorodne, równania liniowe, równania Bernoulliego. Równania liniowe drugiego i wyższych rzędów o stałych współczynnikach. Metoda uzmienniania stałych i metoda przewidywań dla równań liniowych o stałych współczynnikach niejednorodnych. Ciągi i szeregi liczbowe. Kryteria zbieżności szeregów liczbowych: kryterium porównawcze, całkowe, Cauchy’ego, d’Alemberta, Leibniza. Szeregi potęgowe. Rozwijanie funkcji w szereg Taylora. Macierze i wyznaczniki. Macierz odwrotna. Układy równań liniowych. Wzór Cramera. Metoda eliminacji Gaussa. Rząd macierzy. Twierdzenie Kroneckera-Capellego. Wektory na płaszczyźnie i w przestrzeni. Wektory swobodne. Iloczyn skalarny, kąt pomiędzy wektorami. Warunek prostopadłości i równoległości wektorów. Iloczyn wektorowy i jego własności. Pole trójkąta. Iloczyn mieszany. Objętość równoległościanu. Równanie ogólne i przedstawienie parametryczne prostej w przestrzeni. Równanie ogólne płaszczyzny. Przedstawienie krawędziowe prostej. Odległość punktu od płaszczyzny i odległość punktu od prostej.
Metody oceny:
egzamin
Egzamin:
tak
Literatura:
1. R. Leitner, Zarys matematyki wyższej, cz. I i cz. II. 2. R. Leitner, J. Zacharski, Zarys matematyki wyższej, cz. III. 3. W. Stankiewicz, Zadania z matematyki dla wyższych uczelni technicznych, cz. I. 4. W. Krysicki, L. Włodarski, Analiza matematyczna w zadaniach, cz. I.
Witryna www przedmiotu:
Strona wykładowcy https://wzarebs.ch.pw.edu.pl , zestawy zadań na http://mini.pw.edu.pl/~matwar/materialy.html
Uwagi:
brak

Efekty uczenia się

Profil ogólnoakademicki - wiedza

Charakterystyka W01
Posiada wiedzę teoretyczną na temat badania przebiegu zmienności, różniczkowania i całkowania funkcji elementarnych
Weryfikacja: Egzamin, kolokwia
Powiązane charakterystyki kierunkowe: K_W01, K_W02, K_W03
Powiązane charakterystyki obszarowe:
Charakterystyka W02
Posiada wiedzę teoretyczną na temat rozwiązywania podstawowych równań różniczkowych
Weryfikacja: Egzamin, kolokwia
Powiązane charakterystyki kierunkowe: K_W01, K_W02, K_W03
Powiązane charakterystyki obszarowe:
Charakterystyka W03
Posiada wiedzę teoretyczną na temat macierzy i układów równań liniowych
Weryfikacja: Egzamin, kolokwia
Powiązane charakterystyki kierunkowe: K_W01, K_W03
Powiązane charakterystyki obszarowe:

Profil ogólnoakademicki - umiejętności

Charakterystyka U01
Potrafi stosować metody różniczkowania i całkowania funkcji elementarnych
Weryfikacja: Egzamin, kolokwia
Powiązane charakterystyki kierunkowe: K_U01, K_U02, K_U03
Powiązane charakterystyki obszarowe:

Profil ogólnoakademicki - kompetencje społeczne

Charakterystyka K01
potrafi pracować samodzielnie studiując wybrane zagadnienie
Weryfikacja: Prezentacja rozwiązanych zadań na ćwiczeniach
Powiązane charakterystyki kierunkowe: K_K01, K_K06
Powiązane charakterystyki obszarowe: