- Nazwa przedmiotu:
- Modelowanie procesów technologicznych
- Koordynator przedmiotu:
- dr inż. Robert Grabarczyk
- Status przedmiotu:
- Obowiązkowy
- Poziom kształcenia:
- Studia II stopnia
- Program:
- Technologia Chemiczna
- Grupa przedmiotów:
- Wspólne dla kierunku
- Kod przedmiotu:
- CN2A_12
- Semestr nominalny:
- 1 / rok ak. 2018/2019
- Liczba punktów ECTS:
- 3
- Liczba godzin pracy studenta związanych z osiągnięciem efektów uczenia się:
- Projekty- 30, przygotowanie do zajęć- 15, przygotowanie do kolokwium- 15, zaliczenie projektu- 15, razem 75 godzin
- Liczba punktów ECTS na zajęciach wymagających bezpośredniego udziału nauczycieli akademickich:
- Projekty - 30 h; Razem - 30 h = 1,2 ECTS
- Język prowadzenia zajęć:
- polski
- Liczba punktów ECTS, którą student uzyskuje w ramach zajęć o charakterze praktycznym:
- Projekty- 30, przygotowanie do zajęć- 15, przygotowanie do kolokwium- 15, zaliczenie projektu – 15, razem 75 godzin=3 ECTS
- Formy zajęć i ich wymiar w semestrze:
-
- Wykład0h
- Ćwiczenia0h
- Laboratorium0h
- Projekt20h
- Lekcje komputerowe0h
- Wymagania wstępne:
- -
- Limit liczby studentów:
- Projekty 10-15.
- Cel przedmiotu:
- Celem przedmiotu jest uzyskanie przez studenta wiedzy i umiejętności w zakresie modelowania fizycznego i matematycznego w technologii chemicznej. Budowę modeli matematycznych i algorytmy obliczeń poparto przykładami dla wybranych operacji i procesów jednostkowych oraz wykorzystując komercyjny program Chemcad wykonano projekt konkretnej technologii przemysłowej w ramach, którego wykonano symulacje i optymalizacje procesów pośrednich i technologii, jako całości.
- Treści kształcenia:
- P1 - Podstawowe definicje modelowania fizycznego i matematycznego, symulacji i optymalizacji. Budowa i uwarunkowania modelu matematycznego.
P2 - Równania wykorzystywane w modelowaniu: ogólne bilanse (masy, energii, pędu), równania konstytutywne, termodynamiczne, kinetyczne i inne. Nabór danych dla wielkości technologicznych wyznaczanych doświadczalnie i metodami obliczeniowymi.
P3 - Metody matematyczne stosowane w obliczeniach numerycznych w modelowaniu procesów technologii chemicznej.
P4 - Przykład modelowania i algorytm obliczeń przemian fizycznych - modelowanie równowagi fazowej ciecz-para.
P5 - Przykład modelowania i algorytm obliczeń przemian chemicznych - modelowanie procesu reformingu gazu ziemnego (1).
P6 - Kolokwium z omówionych zagadnień o modelowaniu.
P7 - Projekt instalacji przemysłowej opartej o program Chemcad (1) – założenia projektowe ( cel projektu, opis wybranej technologii, w tym reakcje chemiczne, schemat blokowy (ideowy), wybór parametrów procesu, uwarunkowania bezpieczeństwa i środowiska). Budowa schematu ikonowego.
P8 - Projekt instalacji przemysłowej opartej o Chemcad (2) – wprowadzenie strumieni i parametryzacja procesów i operacji jednostkowych wybranej technologii przemysłowej, obliczenia (stosowanie flowsheetingu (arkusza kalkulacyjnego) do symulacji i optymalizacji przemian) i dyskusja bilansu energetycznego.
P9 - Projekt instalacji przemysłowej opartej o Chemcad (3) - warianty ulepszające technologię, czyli optymalizacja parametryczna.
P10 - Zaliczenie projektu.
- Metody oceny:
- 1. Obecność na zajęciach będzie sprawdzana. W trakcie semestru dopuszczalne są dwie nieobecności usprawiedliwione. Nie dopuszcza się nieobecności nieusprawiedliwionej. Usprawiedliwienia nieobecności dokonuje prowadzący zajęcia na podstawie pisemnego usprawiedliwienia przedstawionego przez studenta. Usprawiedliwienie należy przedstawić w terminie 14 dni od dnia nieobecności bądź na najbliższym zjeździe.
2. Efekty uczenia się przypisane do przedmiotu będą weryfikowane poprzez wykonanie i obronę zadania projektowego oraz opracowanie zagadnienia teoretycznego, które będą poddawane ocenie. Dopuszcza się wykonywanie prac w grupach kilkuosobowych.
3. Zaliczenie w oparciu o oceny punktowe za aktywność na zajęciach, opracowanie zagadnienia teoretycznego oraz za wykonanie i obronę projektu. Punktacja łączna = 0,1*(punkty za aktywność) + 0,2*(punkty za opracowanie teoretyczne) + 0,7*(punkty za wykonanie i obronę projektu). Zaliczenie przedmiotu od 50% łącznej liczby punktów możliwych do zdobycia. Przelicznik punktacji na otrzymaną ocenę: 0 – 49% dwa; 50 – 60% trzy; 61 – 70% trzy i pół; 71 – 80% cztery; 81 – 90% cztery i pół; 91 – 100% pięć.
4. Ocena z danego zadania projektowego jest przekazywana do wiadomości studentów za pośrednictwem USOS lub Moodle najpóźniej 7 dni po terminie wykonania zadania. W przypadku, gdy student nie otrzyma wymaganej do zaliczenia przedmiotu liczby punktów jest zobowiązany do poprawy zadania projektowego w terminie wyznaczonym przez prowadzącego zajęcia.
5. Student bądź grupa studentów w trakcie wykonywania zadania projektowego mają prawo korzystać ze wszystkich materiałów pomocniczych udostępnionych przez prowadzącego bądź materiałów przyniesionych przez studenta i uznanych przez prowadzącego za zalecane lub niezbędne do wykonania danego zadania projektowego. Zadania projektowe wykonuje się z wykorzystaniem komputerów będących na wyposażeniu sal, w których odbywają się zajęcia.
6. Jeżeli podczas wykonywania zadania projektowego zostanie stwierdzona niesamodzielność pracy studenta/grupy studentów lub korzystanie przez niego/nich z materiałów lub urządzeń innych niż dozwolone w regulaminie przedmiotu, student uzyskuje ocenę niedostateczną i traci prawo do zaliczenia przedmiotu w jego bieżącej realizacji.
7. Rejestrowanie dźwięku i obrazu przez studentów w trakcie zajęć jest zabronione.
8. Prowadzący zajęcia umożliwia studentowi wgląd do wykonanych przez niego prac projektowych do końca danego roku akademickiego w terminach konsultacji.
- Egzamin:
- nie
- Literatura:
- 1. Elnashaie S.S.E. H., Garhyan P., Conservation equations and modeling of chemical and biochemical processes, Marcel Dekker, Inc. New York, 2003.
2. Górski J., Modelowanie właściwości i procesów cieplno-przepływowych gazu rzeczywistego, Wyd. Politechniki Rzeszowskiej, 1997.
3. Huettner M., Szembek M., Krzywda R., Metody numeryczne w typowych problemach inżynierii procesowej, Wyd. Politechniki Warszawskiej 1999.
4. Luyben W. L., Modelowania, symulacja i sterowanie procesów przemysłu chemicznego, cz. I i II, Warszawa WNT, 1976.
5. Tarnowski W., Bartkiewicz, S., Modelowanie matematyczne i symulacja komputerowa dynamicznych procesów ciągłych, Wyd. Politechniki Koszalińskiej.
- Witryna www przedmiotu:
- -
- Uwagi:
- -
Efekty uczenia się
Profil ogólnoakademicki - wiedza
- Efekt W01_01
- Ma rozszerzoną i pogłębioną wiedzę z zakresu matematyki przydatną do formułowania i rozwiązywania złożonych zadań inżynierskich.
Weryfikacja: Zadania projektowe (P1-P10)
Powiązane efekty kierunkowe:
C2A_W01_01
Powiązane efekty obszarowe:
T2A_W01
- Efekt W07_01
- Potrafi wykorzystać programy komputerowe do obliczeń właściwości substancji i opisu zjawisk oraz symulacji procesów technologicznych.
Weryfikacja: Zadania projektowe (P3-P5), (P7-P9)
Powiązane efekty kierunkowe:
C2A_W07_01
Powiązane efekty obszarowe:
T2A_W07
- Efekt W03_02
- Ma wiedzę z zakresu tworzenia modeli zjawisk i procesów w technologii chemicznej.
Weryfikacja: Zadania projektowe (P1-P5).
Powiązane efekty kierunkowe:
C2A_W03_02
Powiązane efekty obszarowe:
T2A_W03
Profil ogólnoakademicki - umiejętności
- Efekt U01_01
- Potrafi na potrzeby projektu pozyskać dane literaturowe z różnych źródeł (internet, piśmiennictwo, bazy danych, patenty, etc.), weryfikować, analizować i interpretować.
Weryfikacja: Zadania projektowe (P2)
Powiązane efekty kierunkowe:
C2A_U01_01
Powiązane efekty obszarowe:
T2A_U01
- Efekt U07_01
- Potrafi obsługiwać anglojęzyczne programy wykorzystywane w projektowaniu technologii chemicznej, takie jak Chemcad czy Aspen.
Weryfikacja: Zadania projektowe (P7-P9)
Powiązane efekty kierunkowe:
C2A_U07_01
Powiązane efekty obszarowe:
T2A_U07
- Efekt U09_01
- Potrafi obliczać analitycznie wykorzystując znajomość termodynamiki, kinetyki oraz zjawiska transportowe plus metody matematyczne oraz w środowisku pakietu Chemcad dla wybranych operacji fizycznych i reaktorów.
Weryfikacja: Zadania projektowe (P1-P5), (P7-P9)
Powiązane efekty kierunkowe:
C2A_U09_01
Powiązane efekty obszarowe:
T2A_U09
- Efekt U09_02
- Umie zbudować uproszczone modele matematyczne w oparciu o prawa fizyki i chemii, włącznie z zastosowaniem aparatu matematycznego, oraz wykorzystać je i modele komercyjne do rozwiązań problematyki technologii chemicznej.
Weryfikacja: Zadania projektowe (P1-P5), (P7-P9)
Powiązane efekty kierunkowe:
C2A_U09_02
Powiązane efekty obszarowe:
T2A_U09
- Efekt U15_02
- Potrafi rozwiązać analitycznie i numerycznie różne zadania technologiczne dotyczące: bilansu masy, bilansu ciepła, relacji termodynamicznych, kinetyki, obliczeń dla reaktorów okresowych i przepływowych, fizykochemicznej i ekonomicznej prostych technologii chemicznych i inne.
Weryfikacja: Zadania projektowe (P1-P5), (P7-P9)
Powiązane efekty kierunkowe:
C2A_U15_02
Powiązane efekty obszarowe:
T2A_U15
- Efekt U16_01
- Potrafi za pomocą wytycznych programu Chemcad zaprojektować proces technologiczny według własnego doboru reagentów, przemian procesowych i aparatury.
Weryfikacja: Zadania projektowe (P7-P9)
Powiązane efekty kierunkowe:
C2A_U16_01
Powiązane efekty obszarowe:
T2A_U16