- Nazwa przedmiotu:
- Fizyka III
- Koordynator przedmiotu:
- mgr inż. Andrzej Kubiaczyk
- Status przedmiotu:
- Obowiązkowy
- Poziom kształcenia:
- Studia I stopnia
- Program:
- Automatyka i Robotyka
- Grupa przedmiotów:
- Obowiązkowe
- Kod przedmiotu:
- FIZ3z
- Semestr nominalny:
- 4 / rok ak. 2017/2018
- Liczba punktów ECTS:
- 2
- Liczba godzin pracy studenta związanych z osiągnięciem efektów uczenia się:
- Liczba punktów ECTS na zajęciach wymagających bezpośredniego udziału nauczycieli akademickich:
- Język prowadzenia zajęć:
- polski
- Liczba punktów ECTS, którą student uzyskuje w ramach zajęć o charakterze praktycznym:
- Formy zajęć i ich wymiar w semestrze:
-
- Wykład0h
- Ćwiczenia0h
- Laboratorium300h
- Projekt0h
- Lekcje komputerowe0h
- Wymagania wstępne:
- Nie jest wymagane wcześniejsze zaliczenie innych przedmiotów. Wymagana jest znajomość podstaw fizyki na poziomie maturalnym. Zalecane jest wcześniejsze odbycie kursu Fizyki 1 i 2 i Matematyki 1.
- Limit liczby studentów:
- Cel przedmiotu:
- Celem zajęć jest zapoznanie studentów ze zjawiskami fizycznymi w zakresie podstaw fizyki, z zasadami przeprowadzania pomiarów wielkości fizycznych, analizy wyników tych pomiarów, tworzenia wykresów, obliczania niepewności wyznaczonych wielkości, metod weryfikacji założonych wielkości teoretycznych oraz dokumentowania wyników pracy.
- Treści kształcenia:
- Program przedmiotu obejmuje następujące treści merytoryczne z następujących dziedzin fizyki:
MECHANIKA, DYNAMIKA I DRGANIA - Wahadło matematyczne. Mechanika bryły sztywnej. Drgania harmoniczne. Drgania tłumione w obwodzie szeregowym RLC. Współczynnik tłumienia, częstość drgań własnych, logarytmiczny dekrement drgań. Prawa Kirchhoffa. Przesunięcie fazowe i amplituda napięcia zmiennego na kondensatorze w szeregowym obwodzie RLC. Dobroć obwodu, współczynnik tłumienia. Drgania relaksacyjne.
TERMODYNAMIKA - Zależność temperatury wrzenia od ciśnienia. Wyznaczanie współczynnika kappa dla powietrza metodą Clementa Desormesa. Prawa termodynamiki, przemiany gazowe, własności par, przejścia fazowe. Równanie izotermy van der Waalsa. Strumień ciepła. Prawo Fouriera. Prawo Newtona przepływu ciepła przez powierzchnię. Mechanizmy przenoszenia ciepła w ciele stałym. Generacja i anihilacja ciepła. Teoria ciepła właściwego Debye’a. Drgania sieci krystalicznej. Rozwiązanie równania przepływu ciepła w przypadku sinusoidalnej fali temperatury.
OPTYKA - Dyfrakcja światła. Rozkład natężeń światła w obrazie dyfrakcyjnym. Zasada Huygensa. Zasada Bobineta. Podstawy optyki falowej. Siatka dyfrakcyjna. Wyznaczanie długości fali światła generowanych przez atomy różnych pierwiastków. Obserwacja pierścieni Newtona w świetle lampy sodowej oraz światła o nieznanej długości fali. Podstawy optyki geometrycznej. Interferometr Michelsona – wyznaczanie długości fali świetlnej. Wyznaczanie współczynnika załamania światła dla różnych rodzajów szkła i cieczy. Podstawy optyki geometrycznej. Rozszczepienie światła w pryzmacie. Zależność współczynnika załamania od długości fali. Polaryzacja fali elektromagnetycznej, metody polaryzowania światła. Skręcenie płaszczyzny polaryzacji światła, aktywność optyczna naturalna i wymuszona (zjawisko Faraday’a).
FIZYKA WSPÓŁCZESNA - Model atomu Bohra. Stała Rydberga. Liniowe widma emisyjne. Ruch ładunku w polu elektrycznym i magnetycznym. Siła Lorentza. Efekt fotoelektryczny zewnętrzny. Równanie Einsteina i cząsteczkowa teoria światła. Dyfrakcja elektronów i dyfrakcja światła na sieci krystalicznej. Równania de Broglie’a i Bragga. Emisja termiczna, polowa i wtórna elektronów. Praca wyjścia elektronów z metalu.
WŁASNOŚCI MATERII - Zjawisko piezoelektryczne. Prawo Hooke’a. Skalowanie galwanometru w jednostkach ładunku. Podatność magnetyczna paramagnetyków i diamagnetyków. Oddziaływanie materii z polem magnetycznym. Ferromagnetyzm. Ferromagnetyk w polu magnetycznym. Materiały magnetyczne twarde i miękkie. Pętla histerezy. Temperatura Curie. Prawo Curie –Weissa.
- Metody oceny:
- System punktowy, na ocenę końcowa składa się ocena z każdego ćwiczenie (na ocenę składa się ocena z przygotowania i ocena samodzielnie wykonanego sprawozdania) oraz ocena z kolokwium z metod określania niepewności pomiarów. Do zaliczenia przedmiotu konieczne jest zdobycie co najmniej 50% maksymalnej liczby punktów.
- Egzamin:
- Literatura:
- Do wszystkich ćwiczeń dostępne są on-line instrukcje, czyli kilku lub kilkunastostronicowe opracowania zawierające podstawy fizyczne danego ćwiczenia, opis wykonania i analizy pomiarów, pytania kontrolne oraz literaturę właściwą dla danego zagadnienia. Przykładowe podstawowe podręczniki ogólnego kursu fizyki:
D. Halliday, R. Resnick, J. Walker, Podstawy fizyki, PWN 2005
J. Orear, Fizyka, PWN 1990
Cz. Bobrowski, Fizyka – krótki kurs, WNT 1993
- Witryna www przedmiotu:
- Uwagi:
Efekty uczenia się
Profil ogólnoakademicki - wiedza
- Efekt FIZ3z_Inst_W01
- Ma wiedzę w zakresie mechaniki, dynamiki i drgań pozwalającym na rozumienie podstawowych zjawisk fizycznych w tych dziedzinach
Weryfikacja: Kolokwium wstępne przed rozpoczęciem ćwiczenia
Powiązane efekty kierunkowe:
K_W02
Powiązane efekty obszarowe:
T1A_W01
- Efekt FIZ3z_Inst_W02
- Ma wiedzę w zakresie własności elektrycznych i magnetycznych materii pozwalającym na rozumienie podstawowych zjawisk fizycznych w tej dziedzinie
Weryfikacja: Kolokwium wstępne przed rozpoczęciem ćwiczenia
Powiązane efekty kierunkowe:
K_W02
Powiązane efekty obszarowe:
T1A_W01
- Efekt FIZ3z_Inst_W03
- Ma wiedzę w zakresie optyki pozwalającym na rozumienie podstawowych zjawisk fizycznych w tej dziedzinie
Weryfikacja: Kolokwium wstępne przed rozpoczęciem ćwiczenia
Powiązane efekty kierunkowe:
K_W02
Powiązane efekty obszarowe:
T1A_W01
- Efekt FIZ3z_Inst_W04
- Ma wiedzę w zakresie fizyki współczesnej pozwalającym na rozumienie podstawowych zjawisk fizycznych w tej dziedzinie
Weryfikacja: Kolokwium wstępne przed rozpoczęciem ćwiczenia
Powiązane efekty kierunkowe:
K_W02
Powiązane efekty obszarowe:
T1A_W01
- Efekt FIZ3z_Inst_W05
- Ma wiedzę w zakresie obliczania niepewności, analizy wyników, metod weryfikacji hipotez i wizualizacji wyników pomiarów
Weryfikacja: Kolokwium + ocena sprawozdania
Powiązane efekty kierunkowe:
K_W01, K_W11
Powiązane efekty obszarowe:
T1A_W01, T1A_W02, T1A_W04
Profil ogólnoakademicki - umiejętności
- Efekt FIZ3z_Inst_U01
- Potrafi zabudować prosty układ pomiarowy zgodnie z zadanym schematem i specyfikacją oraz sprawdzić poprawność jego działania
Weryfikacja: Ocena realizacji ćwiczenia w trakcie zajęć
Powiązane efekty kierunkowe:
K_U07
Powiązane efekty obszarowe:
T2A_U09
- Efekt FIZ3z_Inst_U02
- Potrafi samodzielnie przeprowadzać eksperymenty, w tym pomiary wspomagane komputerowo
Weryfikacja: Obserwacja realizacji ćwiczenia w trakcie zajęć i ocena sprawozdania z ćwiczenia
Powiązane efekty kierunkowe:
K_U06, K_U07
Powiązane efekty obszarowe:
T1A_U09, T2A_U09
- Efekt FIZ3z_Inst_U03
- Potrafi wizualizować i analizować wyniki pomiarów, obliczać niepewności wyznaczonych wielkości oraz weryfikować doświadczalnie założone zależności teoretyczne
Weryfikacja: Ocena sprawozdania z ćwiczenia
Powiązane efekty kierunkowe:
K_U07
Powiązane efekty obszarowe:
T2A_U09
- Efekt FIZ3z_Inst_U04
- Potrafi dokumentować wyniki pracy i przedstawić je w formie pisemnego opracowania
Weryfikacja: Ocena sprawozdania z ćwiczenia
Powiązane efekty kierunkowe:
K_U01, K_U02, K_U06
Powiązane efekty obszarowe:
T1A_U01, T1A_U02, T1A_U07, T1A_U09
Profil ogólnoakademicki - kompetencje społeczne
- Efekt FIZ3z_Inst_K01
- Potrafi pracować w grupie
Weryfikacja: Ocena realizacji ćwiczenia w trakcie zajęć
Powiązane efekty kierunkowe:
K_K04
Powiązane efekty obszarowe:
T1A_K03, T1A_K04, T1A_K05