- Nazwa przedmiotu:
- Laboratorium materiałów konstrukcyjnych
- Koordynator przedmiotu:
- Dr hab. inż. Krzysztof Rożniatowski
- Status przedmiotu:
- Obowiązkowy
- Poziom kształcenia:
- Studia I stopnia
- Program:
- Mechatronika
- Grupa przedmiotów:
- Materiały konstrukcyjne
- Kod przedmiotu:
- 1150-MT000-ISP-0120
- Semestr nominalny:
- 2 / rok ak. 2017/2018
- Liczba punktów ECTS:
- 1
- Liczba godzin pracy studenta związanych z osiągnięciem efektów uczenia się:
- 1) Liczba godzin kontaktowych - 15 laboratorium godz.;
2) Praca własna studenta: – 13 godzin, w tym:
a) 6 godz. – bieżące przygotowywanie się studenta do ćwiczeń laboratoryjnych, studia literaturowe,
b) 7 godz. – przygotowywanie sprawozdań ze zrealizowanych ćwiczeń laboratoryjnych.
3) RAZEM – 28 godzin.
- Liczba punktów ECTS na zajęciach wymagających bezpośredniego udziału nauczycieli akademickich:
- 0,5 punktu ECTS – liczba godzin kontaktowych - 15, w tym:
a) laboratorium- 15 godz.;
- Język prowadzenia zajęć:
- polski
- Liczba punktów ECTS, którą student uzyskuje w ramach zajęć o charakterze praktycznym:
- 1 punkt ECTS - 28 godz., w tym:
1) ćwiczenia laboratoryjne – 15 godz.
2) przygotowywanie się do ćwiczeń laboratoryjnych - 6 godz. (ćwiczenie 1: 0 godz., ćwiczenia 2-7: 6 x 1godz.)
3) 7 godz. – opracowanie wyników, przygotowanie sprawozdań (7 x 1 godz. na sprawozdanie z każdego z ćwiczeń).
- Formy zajęć i ich wymiar w semestrze:
-
- Wykład0h
- Ćwiczenia0h
- Laboratorium15h
- Projekt0h
- Lekcje komputerowe0h
- Wymagania wstępne:
- Zaliczony wykład Materiały Konstrukcyjne, wiedza o podstawowych grupach materiałów, metodach ich kształtowania, strukturze i właściwościach. Podstawowa wiedza z przedmiotów Matematyka, Chemia, Fizyka (m.in. jednostki, symbolika, proste obliczenia, optyka).
- Limit liczby studentów:
- -
- Cel przedmiotu:
- Przekazanie wiedzy o mikrostrukturze materiałów metalicznych, sposobach jej ujawniania, kształtowania oraz wpływie mikrostruktury na właściwości użytkowe materiałów. Zapoznanie z podstawowymi zabiegami obróbki cieplnej (stali i stopów nieżelaznych). Wykazanie związku pomiędzy obróbką materiału, powstałą strukturą a właściwościami użytkowymi. Prezentacja podstawowych grup tworzyw metalicznych – stopy na bazie żelaza, miedzi, aluminium. Demonstracja zjawisk zachodzących podczas rekrystalizacji materiału (na przykładzie mosiądzów). Wstępne przygotowanie do wnioskowania o podstawowych mechanizmach zniszczenia wyrobów metalicznych.
- Treści kształcenia:
- 1) Ćwiczenie wstępne. Zasady badań metalograficznych, typowe struktury metalograficzne.
2) Badanie wpływu węgla na mikrostrukturę i twardość stopów Fe-Fe3C w stanie równowagi.
3) Odkształcenie plastyczne i rekrystalizacja – wyznaczanie temperatury rekrystalizacji we wstępnie odkształconym mosiądzu CuZn30.
4) Obróbka cieplna stali konstrukcyjnych (ulepszanie cieplne stali).
5) Badania mikroskopowe żeliw białych, szarych i ciągliwych – ocena zróżnicowania struktury w kontekście przewidywanych właściwości.
6) Ważniejsze stopy miedzi i aluminium oraz sposoby ich umacniania – analiza typowych struktur stopów miedzi w kontekście właściwości i zastosowania, analiza typowych struktur stopów aluminium w kontekście właściwości i zastosowania, przesycanie i starzenie durali klasycznych.
7) Badania makroskopowe – analiza typowych form zniszczenia, próba Baumana, próba głębokiego trawienia.
8) Podsumowanie ćwiczeń – dyskusja nad związkami technologii wytwarzania – struktury – właściw
- Metody oceny:
- Zaliczenie 7 ćwiczeń laboratoryjnych. Ocena za ćwiczenie jest wypadkową oceny za przygotowanie do ćwiczenia (krótki, 15 minutowy pisemny sprawdzian oceniany w skali ocen: 2.0-5.0) oraz oceny sprawozdania z wykonania ćwiczenia praktycznego (w skali ocen: 2.0-5.0).
Sprawozdania, w zależności od liczności grupy, przygotowywane są w zespołach 2-5 osobowych, w czasie pracy własnej. Należy zaliczyć na ocenę pozytywną wszystkie z 7 ćwiczeń laboratoryjnych.
Ćwiczenie 1 jest rozliczne tylko w oparciu o sprawozdanie (brak sprawdzianu). Ocena końcowa jest wypadkową ocen cząstkowych. Na ostatnich zajęciach przewidziane jest podsumowanie ćwiczeń, wskazanie ogólnych wniosków nad relacją pomiędzy technologią, strukturą i właściwościami materiałów na przykładzie konstrukcyjnych tworzyw metalicznych oraz dyskusja nad osiągnięciami indywidualnymi studentów.
- Egzamin:
- nie
- Literatura:
- • Dobrzański Leszek A., Podstawy nauki o materiałach i metaloznawstwo, Wyd. WNT 2002;
• Ciszewski A., Szummer A., Radomski T., Materiałoznawstwo, Wyd. Politechnika Warszawska, 2009;
• Ashby M., Cebond D., Shercliff H., Inżynieria materiałowa t.2, Wyd. Galaktyka, 2011;
• Prowans S., Struktura Stopów, Wyd. Naukowe PWN , Warszawa, 1998;
• Rudnik S., Metaloznawstwo, Wyd. Naukowe PWN, Warszawa, 1994.
- Witryna www przedmiotu:
- -
- Uwagi:
- -
Efekty uczenia się
Profil ogólnoakademicki - wiedza
- Efekt 1150-MT000-ISP-0120_W1
- Student rozumie zasadę powstawania obrazu struktury, zna zasadę ujawniania struktury w stopach metali, rozumie pojęcie mikrostruktury i jej związku z techniką wytwarzania oraz podstawowymi cechami użytkowymi, potrafi rozróżnić strukturę jednofazową od wielofazowej. Student potrafi rozpoznać różne rodzaje stali ze względu na zmienną zawartość węgla, wskazać te z nich, które cechuje wyższa twardość, uzasadnić zmienność twardości w funkcji zawartości węgla. Student potrafi rozpoznać i nazwać zróżnicowane jakościowo struktury żeliw. Student potrafi wytłumaczyć zmiany zachodzące w strukturze i właściwościach materiałów metalicznych poddawanych odkształceniu plastycznemu i wyżarzaniu rekrystalizującemu. Student potrafi wytłumaczyć zmiany zachodzące w stali poddawanej procesowi hartowania i odpuszczania. Potrafi nazwać struktury powstające w trakcie tego procesu. Potrafi uzasadnić skład chemiczny stali używanych do tego procesu umacniania. Student potrafi wymienić i wskazać sposób podziału takich stopów lekkich jak stopy na osnowie miedzi i stopy na osnowie aluminium. Potrafi rozpoznać charakterystyczne struktury tych materiałów oraz wnioskować o sposobie ich kształtowania. Potrafi wskazać, które z nich nadają się do odlewania, które są typowymi stopami do przeróbki plastycznej a które z nich można umacniać mechanizmem wydzieleniowym. Potrafi wskazać i nazwać charakterystyczne formy przełomów (zmęczeniowy, doraźny, kruchy, plastyczny) oraz wytłumaczyć sposób ich powstawania.
Weryfikacja: Zaliczenie pozytywne sprawdzianów z 6 ćwiczeń laboratoryjnych (ćwiczenia 2-7), zaliczenie pozytywne sprawozdań przygotowanych po każdym z ćwiczeń (ćwiczenia 1-7).
Powiązane efekty kierunkowe:
KMChtr_W05, KMchtr_W15, KMchtr_W20
Powiązane efekty obszarowe:
T1A_W02, T1A_W07, InzA_W02, InzA_W03, T1A_W03, T1A_W04, T1A_W07, InzA_W02, T1A_W06
Profil ogólnoakademicki - umiejętności
- Efekt 1150-MT000-ISP-0120_U1
- Student potrafi posługiwać się takimi urządzeniami jak mikroskop metalograficzny, twardościomierz Rockwella, piec muflowy laboratoryjny, odczynniki do trawienia stopów metali. Student potrafi wykonać i wyjaśnić prosty eksperyment umacniania duralu na drodze przesycania i starzenia. Student potrafi przeprowadzić proste obserwacje tworzyw konstrukcyjnych w skali makro – wykonać samodzielnie proces głębokiego trawienia spoin, ujawnić rozkład siarczków w stali metoda Baumana. Potrafi zaproponować i wykonać prosty eksperyment pozwalający na wyznaczenie temperatury rekrystalizacji mosiądzu jednofazowego po zadanym zgniocie.
Weryfikacja: Zaliczenie pozytywne sprawozdań przygotowanych po każdym z ćwiczeń (ćwiczenia 1-7).
Powiązane efekty kierunkowe:
KMchtr_U03, KMchtr_U04, KMchtr_U12
Powiązane efekty obszarowe:
T1A_U03, InzA_U02, T1A_U03, T1A_U04, T1A_U07, T1A_U08, InzA_U01
Profil ogólnoakademicki - kompetencje społeczne
- Efekt 1150-MT000-ISP-0120_K1
- Student potrafi pracować w grupie, dokonywać podziału obowiązków pomiędzy współpartnerami w eksperymencie, wymieniać się wynikami realizowanymi w ramach jednego zadania z wykorzystaniem różnych urządzeń.
Weryfikacja: Zaliczenie pozytywne sprawozdań przygotowanych po każdym z ćwiczeń (ćwiczenia 1-7).
Powiązane efekty kierunkowe:
KMchtr_K04
Powiązane efekty obszarowe:
T1A_K03, T1A_K04