Nazwa przedmiotu:
Matematyka - wybrane działy (BZ, IPB)
Koordynator przedmiotu:
Dr Anna Zapart
Status przedmiotu:
Obowiązkowy
Poziom kształcenia:
Studia II stopnia
Program:
Budownictwo
Grupa przedmiotów:
Obowiązkowe
Kod przedmiotu:
MATEMW
Semestr nominalny:
1 / rok ak. 2017/2018
Liczba punktów ECTS:
5
Liczba godzin pracy studenta związanych z osiągnięciem efektów uczenia się:
...Wykład 30 godzin; ćwiczenia 45 godzin ; zapoznanie się z litaraturą 10godzin; przygotowanie sie do sprawdzianów 20 godzin; przygtowanie się do bieżacych ćwiczeń 15 godzin ; przygotowanie sie do ćwiczeń w laboratorium 15godzin; razem 135 ; = 5 ECTS
Liczba punktów ECTS na zajęciach wymagających bezpośredniego udziału nauczycieli akademickich:
Wykład 30 godzin; ćwiczenia i laboratorium 45 godzin; konsultacje przygotowujące do ćwiczeń i laboratoriów 15 godz.Razem 90h= 3,5 ECTS
Język prowadzenia zajęć:
polski
Liczba punktów ECTS, którą student uzyskuje w ramach zajęć o charakterze praktycznym:
Przygotowanie do zajęć 20h; przygotowanie do zajęć w laboratorium 15h; przygotowanie do sprawdzianów 15h; razem 50h = 2 ECTS
Formy zajęć i ich wymiar w semestrze:
  • Wykład30h
  • Ćwiczenia45h
  • Laboratorium0h
  • Projekt0h
  • Lekcje komputerowe0h
Wymagania wstępne:
Znajomość materiału z matematyki z zakresu studiów I stopnia: analizy matematycznej I i II, algebry i geometrii analitycznej. W szczególności rachunku różniczkowego i całkowego funkcji jednej i wielu zmiennych; równań różniczkowych zwyczajnych; równań powierzchni drugiego stopnia, elementów geometrii różniczkowej, układów równań liniowych (metoda eliminacji Gaussa).
Limit liczby studentów:
brak limitu
Cel przedmiotu:
Umiejętność rozwiązywania prostych równań różniczkowych cząstkowych liniowych. Umiejętność opracowywania danych za pomocą metod statystyki matematycznej. Znajomość testowania hipotez statystycznych parametrycznych i nieparametrycznych. Umiejętność formułowania i rozwiązywania problemów optymalizacyjnych za pomocą programowania liniowego z użyciem metody simpleks. Rozwiązywanie zagadnień transportowych. Znajomość elementów teorii gier ( gry z naturą).
Treści kształcenia:
Szeregi Fouriera. Równania różniczkowe cząstkowe quasiliniowe I rzędu. Równania różniczkowe cząstkowe liniowe rzędu II. Sprowadzanie równań liniowych różniczkowych cząstkowych II rzędu do postaci kanonicznej. Metody rozwiązywania: metoda d`Alemberta i Fouriera. Zmienna losowa jedno i dwuwymiarowa: zmienna skokowa i ciągła. Dystrybuanta, wartość średnia, wariancja. Rozkłady zmiennych losowych. Twierdzenia graniczne. Rozkład zero-jedynkowy, dwumianowy, Poissona, jednostajny, wykładniczy, Cauchy`ego, normalny, t-Studenta, chi-kwadrat. Test zgodności chi-kwadrat, test niezależności, test mediany. Programowanie liniowe. Metoda simpleks. Zagadnienia transportowe. Elementy teorii gier.
Metody oceny:
Ćwiczenia - dwa sprawdziany, każdy po 20pkt. Egzamin - część zadaniowa i część teoretyczna; łącznie 60 pkt. Przedmiot zalicza co najmniej 41pkt liczonych jako suma punktów z ćwiczeń i egzaminu.
Egzamin:
tak
Literatura:
1. Kącki E. – Równania różniczkowe cząstkowe w zagadnieniach fizyki i techniki. WN-T. 2. Tołstow G.P. – Szeregi Fouriera. PWN 3. Musiał-Walczak I., Muszyński J., Radzikowski J., Włodarska-Dymitruk A. – Zbiór zadań z matematyki t.III – O.W. PW 4. Otto E. (praca zbiorowa) – Matematyka dla wydziałów budowlanych i mechanicznych. PWN. 5. Traczyk T, Mączyński M. – Matematyka stosowana w inŜynierii chemicznej. WN-T. 6. Tichonow, Samarski – Równania fizyki matematycznej. PWN. 7. Gerstenkorn T, Śródka T. – Kombinatoryka i rachunek prawdopodobieństwa. PWN. 8. Plucińska A. , Pluciński E. – Elementy probabilistyki. 9. Greń J. – Zadania i modele statystyki matematycznej. PWN 10. Smirnow, Dunin-Barkowski – Kurs rachunku prawdopodobieństwa i statystyki dla zastosowań technicznych. PWN. 11. Jaworski K.M. – Metodologia projektowania realizacji budowy. PWN. 12. Stark M., Nicholls R.L. – Matematyczne podstawy projektowania inżynierskiego. PWN. 13. Stachurski A., Wierzbicki A.,- Podstawy optymalizacji. PWN.
Witryna www przedmiotu:
https://pele.il.pw.edu.pl
Uwagi:
Na witrynie edykacyjnej PELE są podane wszystkie informacje dotyczące przedmiotu: -regulamin, - literatura, - zadania na każdy tydizeń, niektóre z rozwiązaniami w postaci prezentacji ( z głosem), - wyniki prac i egzaminów.

Efekty uczenia się

Profil ogólnoakademicki - wiedza

Efekt MATEMWW1
Student ma opanowaną metodę Fouriera dla równań rózniczkowych cząstkowych liniowych; zna podstawowe hipotezy statystyczne i testy ich weryfikacji; zna podstawowe zagadnienia optymalizacji liniowej.
Weryfikacja: 2 sprawdziany w czsie ćwiczeń; egzamin na koniec semestru.
Powiązane efekty kierunkowe: K2_W01, K2_W03
Powiązane efekty obszarowe: T2A_W01, T2A_W03, T2A_W07

Profil ogólnoakademicki - umiejętności

Efekt MATEMWU1
Student potrafi sklasyfokować typy równań rózniczkowych cząstkowych i zastosować do nich odpowiednia metodę rozwiązania; potrafi przetestować podstawowe hipotezy statystyczne, potrafi sformułować i rozwiązać proste liniwe zagadnienia optymalizacyjne.
Weryfikacja: jak dla wiedzy ( sprawdziany i egzamin)
Powiązane efekty kierunkowe: K2_U01, K2_U02
Powiązane efekty obszarowe: T2A_U09, T2A_U11, T2A_U09, T2A_U18

Profil ogólnoakademicki - kompetencje społeczne

Efekt MATEMWK1
Student potrafi korzystać z literatury; rozumie potrzebę nieustannego kształcenie; potrafi rozwiązywć problemy w grupie.
Weryfikacja: sprawdziany
Powiązane efekty kierunkowe: K2_K01, K2_K02
Powiązane efekty obszarowe: T2A_K03, T2A_K04, T2A_K01, T2A_K06