- Nazwa przedmiotu:
- Wybrane działy matematyki stosowanej I
- Koordynator przedmiotu:
- dr Artur Bryk, wykł., Wydział Transportu Politechniki Warszawskiej
- Status przedmiotu:
- Obowiązkowy
- Poziom kształcenia:
- Studia II stopnia
- Program:
- Transport
- Grupa przedmiotów:
- Obowiązkowe
- Kod przedmiotu:
- TR.NMK101
- Semestr nominalny:
- 1 / rok ak. 2016/2017
- Liczba punktów ECTS:
- 2
- Liczba godzin pracy studenta związanych z osiągnięciem efektów uczenia się:
- 58 godzin, w tym: praca na wykładach: 9 godz., praca na ćwiczeniach: 9 godz., studiowanie literatury przedmiotu: 17 godz., konsultacje: 3 godz., przygotowanie do zaliczenia przedmiotu: 20 godz.
- Liczba punktów ECTS na zajęciach wymagających bezpośredniego udziału nauczycieli akademickich:
- 1,0 pkt ECTS (21 godzin, w tym: praca na wykładach: 9 godz., praca na ćwiczeniach: 9 godz., konsultacje: 3 godz.)
- Język prowadzenia zajęć:
- polski
- Liczba punktów ECTS, którą student uzyskuje w ramach zajęć o charakterze praktycznym:
- 0
- Formy zajęć i ich wymiar w semestrze:
-
- Wykład15h
- Ćwiczenia15h
- Laboratorium0h
- Projekt0h
- Lekcje komputerowe0h
- Wymagania wstępne:
- Posiada wiedzę z zakresu analizy matematycznej i rachunku prawdopodobieństwa na poziomie wymaganym na studiach I stopnia
- Limit liczby studentów:
- wykład: brak, ćwiczenia: 30 osób
- Cel przedmiotu:
- Nabycie wiedzy i umiejętności w zakresie jednowymiarowych procesów stochastycznych oraz ich zastosowań w technice. Wykształcenie umiejętności rozwiązywania elementarnych problemów opisywanych za pomocą procesów stochastycznych.
- Treści kształcenia:
- Wykład: definicja rzeczywistego procesu stochastycznego, warunki zgodności oraz twierdzenie Kołmogorowa o istnieniu procesu, podstawowe parametry liczbowe procesów stochastycznych, ośrodkowość procesu stochastycznego, procesy o przyrostach niezależnych, proces Poissona, procesy normalne, proces Wienera (proces ruchu Browna), proces Ornsteina-Uhlenbecka, procesy stacjonarne – przykłady, własność Markowa, funkcja prawdopodobieństwa przejścia, równanie Chapmana-Kołmogorowa, procesy Markowa o przeliczalnej przestrzeni stanów i czasie dyskretnym, macierz prawdopodobieństw przejścia, proces błądzenia losowego, procesy Markowa o przeliczalnej przestrzeni stanów i czasie ciągłym, równania Kołmogorowa dla rozkładu jednowymiarowego i dla prawdopodobieństwa przejścia, proces urodzin i śmierci, procesy dyfuzji oraz ich własności i zastosowania.
Ćwiczenia: wyznaczanie wartości oczekiwanej, funkcji kowariancji oraz wariancji dla wybranych procesów stochastycznych, badanie własności procesu Poissona i procesu Wienera, stwierdzanie własności stacjonarności procesu (w węższym i szerszym sensie), przykłady, sprawdzanie własności Markowa dla wybranych procesów, wyznaczanie postaci funkcji prawdopodobieństwa przejścia, wyznaczanie macierzy prawdopodobieństw przejścia dla procesów Markowa o przeliczalnej przestrzeni stanów dla dowolnej liczby kroków, zastosowanie równań Kołmogorowa do wyznaczania rozkładów stacjonarnych procesów ze szczególnym uwzględnieniem procesu Poissona i procesu urodzin i śmierci, zastosowania procesów dyfuzji do modelowania zagadnień technicznych.
- Metody oceny:
- Wykład i ćwiczenia: 2 kolokwia pisemne przeprowadzone na ćwiczeniach, oceniane punktowo w skali 0 - 20 punktów.
Do zaliczenia przedmiotu wymagane jest uzyskanie z każdego z kolokwiów co najmniej 10 punktów.
- Egzamin:
- nie
- Literatura:
- 1) Plucińska A., Pluciński E., Probabilistyka, WNT, Warszawa 2000;
2) Sobczyk K., Stochastyczne równania stochastyczne, WNT, Warszawa 1996;
3) Wentzell A.D., Wykłady z procesów stochastycznych, PWN, Warszawa 1980.
- Witryna www przedmiotu:
- www.wt.pw.edu.pl
- Uwagi:
- Na przedmiocie realizowane są treści z zakresu procesów stochastycznych.
O ile nie powoduje to zmian w zakresie powiązań danego modułu zajęć z kierunkowymi efektami kształcenia w treściach kształcenia mogą być wprowadzane na bieżąco zmiany związane z uwzględnieniem najnowszych osiągnięć naukowych.
Efekty uczenia się
Profil ogólnoakademicki - wiedza
- Efekt W01
- Posiada wiedzę na temat rzeczywistego procesu stochastycznego i jego podstawowych parametrów liczbowych
Weryfikacja: Aktywność na zajęciach, kolokwium 1 (2 zadania z zakresu efektu, wymagane jest poprawne rozwiązanie jednego z tych zadań)
Powiązane efekty kierunkowe:
Tr2A_W01
Powiązane efekty obszarowe:
T2A_W01
- Efekt W02
- Zna podstawowe procesy: o przyrostach niezależnych, Poissona, Wienera, stacjonarne
Weryfikacja: Aktywność na zajęciach, kolokwium 1 (2 zadania z zakresu efektu, wymagane jest poprawne rozwiązanie jednego z tych zadań)
Powiązane efekty kierunkowe:
Tr2A_W01
Powiązane efekty obszarowe:
T2A_W01
- Efekt W03
- Posiada wiedzę na temat procesów Markowa w czasie dyskretnym i ciągłym
Weryfikacja: Aktywność na zajęciach, kolokwium 2 (2 zadania z zakresu efektu, wymagane jest poprawne rozwiązanie jednego z tych zadań)
Powiązane efekty kierunkowe:
Tr2A_W01
Powiązane efekty obszarowe:
T2A_W01
- Efekt W04
- Posiada wiedzę na temat procesów dyfuzji oraz ich własności i zastosowania
Weryfikacja: Aktywność na zajęciach, kolokwium 2 (2 zadania z zakresu efektu, wymagane jest poprawne rozwiązanie jednego z tych zadań)
Powiązane efekty kierunkowe:
Tr2A_W01
Powiązane efekty obszarowe:
T2A_W01
Profil ogólnoakademicki - umiejętności
- Efekt U01
- Potrafi wyznaczyć wartość oczekiwaną, funkcję kowariancji oraz wariancji procesu stochastycznego
Weryfikacja: Aktywność na zajęciach, kolokwium 1 (2 zadania z zakresu efektu, wymagane jest poprawne rozwiązanie jednego z tych zadań)
Powiązane efekty kierunkowe:
Tr2A_U08, Tr2A_U04
Powiązane efekty obszarowe:
T2A_U09, InzA_U02, T2A_U05
- Efekt U02
- Potrafi badać własności procesu Poissona i procesu Wienera. Umie sprawdzić czy proces jest o przyrostach niezależnych i stacjonarny. Zna przykłady stacjonarnych szeregów czasowych
Weryfikacja: Aktywność na zajęciach, kolokwium 1 (2 zadania z zakresu efektu, wymagane jest poprawne rozwiązanie jednego z tych zadań)
Powiązane efekty kierunkowe:
Tr2A_U08, Tr2A_U04
Powiązane efekty obszarowe:
T2A_U09, InzA_U02, T2A_U05
- Efekt U03
- Potrafi sprawdzić własność Markowa dla wybranych procesów oraz wyznaczyć macierz prawdopodobieństw przejścia dla procesów Markowa o przeliczalnej przestrzeni stanów dla dowolnej liczby kroków
Weryfikacja: Aktywność na zajęciach, kolokwium 2 (2 zadania z zakresu efektu, wymagane jest poprawne rozwiązanie jednego z tych zadań)
Powiązane efekty kierunkowe:
Tr2A_U08, Tr2A_U04
Powiązane efekty obszarowe:
T2A_U09, InzA_U02, T2A_U05
- Efekt U04
- Umie zastosować równania Kołmogorowa do wyznaczania rozkładów stacjonarnych procesów ze szczególnym uwzględnieniem procesu Poissona i procesu urodzin i śmierci. Zna zastosowania procesów dyfuzji do modelowania zagadnień technicznych
Weryfikacja: Aktywność na zajęciach, kolokwium 2 (2 zadania z zakresu efektu, wymagane jest poprawne rozwiązanie jednego z tych zadań)
Powiązane efekty kierunkowe:
Tr2A_U08, Tr2A_U04
Powiązane efekty obszarowe:
T2A_U09, InzA_U02, T2A_U05