- Nazwa przedmiotu:
- Wybrane zastosowania mechaniki
- Koordynator przedmiotu:
- dr inż. Jarosław Zalewski
- Status przedmiotu:
- Obowiązkowy
- Poziom kształcenia:
- Studia I stopnia
- Program:
- Administracja
- Grupa przedmiotów:
- Obowiązkowe
- Kod przedmiotu:
- A12_WZM
- Semestr nominalny:
- 4 / rok ak. 2015/2016
- Liczba punktów ECTS:
- 3
- Liczba godzin pracy studenta związanych z osiągnięciem efektów uczenia się:
- Godziny wykładu 10
Godziny ćwiczeń 10
Nauka własna 35
Przygotowanie do egzaminu
(w tym konsultacje) 10
Przygotowanie do kolokwiów
(w tym konsultacje) 15
Razem 80
- Liczba punktów ECTS na zajęciach wymagających bezpośredniego udziału nauczycieli akademickich:
- 1 pkt. ECTS
Godziny wykładu 10
Godziny ćwiczeń 10
Konsultacje 2
Razem 22 godz.
- Język prowadzenia zajęć:
- polski
- Liczba punktów ECTS, którą student uzyskuje w ramach zajęć o charakterze praktycznym:
- 2 pkt.
- Formy zajęć i ich wymiar w semestrze:
-
- Wykład150h
- Ćwiczenia0h
- Laboratorium150h
- Projekt0h
- Lekcje komputerowe0h
- Wymagania wstępne:
- Przedmiot nie wymaga specjalnych przygotowań, poza znajomością podstawowych elementów matematyki z zakresu geometrii i trygonometrii. Przedmiot jest pomocny w rozwinięciu wyobraźni pod kątem umieszczania i opisu położenia obiektów w przyjętych uładach współrzędnych, w przestrzeni i na płaszczyźnie. Istotą przedmiotu jest również analiza wpływu obciążeń na elementy konstrukcji.
- Limit liczby studentów:
- wykład - brak, laboratoria - 30 osób
- Cel przedmiotu:
- Celem przedmiotu jest zapoznanie studentów z podstawowymi zagadnieniami mechaniki oraz wytrzymałości materiałów, szczególnie w aspekcie administracji obiektami wolnostojącymi i konstrukcjami.
Wykłady obejmują podstawowe pojęcia i problemy, stanowią wyjaśnienie zagadnień teoretycznych oraz wprowadzenie do bardziej złożonych problemów. Mają na celu zaznajomienie studenta z:
- podstawowymi prawami statyki oraz podstawami wytrzymałości materiałów;
- sposobami przeprowadzania prostych obliczeń analitycznych;
- nazewnictwem oraz potencjalnymi zagrożeniami pod kątem eksploatacji i administrowania obiektami wolnostojącymi;
Ćwiczenia/seminaria umożliwiają rozwinięcie orientacji w rozmieszczeniu obiektów na płaszczyźnie i w przestrzeni oraz stanowią praktyczne zastosowanie wybranych zagadnień z wykładów. Ponadto są to zajęcia umożliwiające poznanie podstaw pracy z programami komputerowymi wspierającymi wirtualne tworzenie konstrukcji z elementami modelowania.
- Treści kształcenia:
- Wykłady (tematy oraz zagadnienia)
Podstawowe wielkości wektorowe i skalarne, układy współrzędnych. Rola tych wielkości w mechanice. Sposób opisu położenia układu mechanicznego na płaszczyźnie i w przestrzeni.
Modelowanie i projektowanie konstrukcji. Podstawowe elementy konstrukcji. Reprezentowanie wybranych elementów konstrukcji przez obiekty geometryczne (punkt, prosta, odcinek, itp.).
Pojęcie siły, momentu siły oraz pary sił. Rodzaje obciążeń działających na konstrukcję.
Rodzaje obciążeń konstrukcji, ciężar, geometryczna niezmienność konstrukcji. Rodzaje podpór i ich reakcje.
Zasady statyki. Przedstawienie sześciu zasad statyki oraz odniesienie ich do konkretnych przykładów.
Płaski układ sił, warunki równowagi układów sił. Określenie zadania statyki jako analizy stanu, w którym układ mechaniczny pozostaje w równowadze. Określenie warunków fizycznych, w jakich zachodzi równowaga.
Przykładowa analiza płaskiego układu sił przyłożonych do konstrukcji. Reakcje podpór. Przedstawienie problemu stattyki konstrukcji lub elementu konstrukcji w oparciu o układy belkowe lub kratownice. Wyznaczanie wartości reakcji podpór.
Siły przekrojowe, rodzaje i skutki działania. Opis i omówienie skutków działania sił wewnętrznych w elementach konstrukcji. Zjawisko ściskania, rozciągania, skręcania oraz zginania spowodowane oddziaływaniem sił wewnętrznych na elementy konstrukcji.
Laboratoria:
1. Omówienie programu komputerowego służącego do tworzenia konstrukcji budowlanych, zapoznanie z głównymi funkcjami, podstawy tworzenia konstrukcji, rodzaje podpór.
2. Tworzenie, obciążanie i obliczanie belek prostych jako elementów konstrukcji budowlanych. Zadania do samodzielnego wykonania.
3. Tworzenie, obciążanie i obliczanie ram płaskich jako fragmentów konstrukcji budowlanych. Przykłady do samodzielnego wykonania.
4. Wybrane aspekty tworzenia konstrukcji płaskich, tworzenie podpór, definiowanie złożonych obciążeń.
5. Tworzenie kratownic płaskich, jako zamkniętych elementów większych konstrukcji.
- Metody oceny:
- Zaliczenie wykładów oraz ćwiczeń laboratoryjnych na podstawie osobnych kolokwiów sprawdzających umiejętności teoretyczne prezentowane na wykładzie oraz wybrane ich zastosowania w środowisku wirtualnym w realizowanym zakresie.
Zaliczenie wykładów w oparciu o zestaw 8 pytań punktowanych od 0 do 1 pkt. Zaliczenie laboratorium na podstawie własnej pracy nad utworzeniem, obciążeniem i obliczeniem konstrukcji.
- Egzamin:
- nie
- Literatura:
- 1. Engel Z., Giergiel J., Mechanika ogólna. T1. Statyka i kinematyka, PWN, Warszawa 1990.
2. Niezgodziński T., Mechanika ogólna, PWN, Warszawa 2010.
3. Zalewski J., Materiały pomocnicze do ćwiczeń laboratoryjnych z podstaw mechaniki stosowanej, OWPW, Warszawa 2013.
4. Lewiński J., Podstawy mechaniki. Statyka i wytrzymałość materiałów, OWPW, Warszawa 2006.
5. Osiński Z., Mechanika ogólna, PWN, Warszawa 2000.
- Witryna www przedmiotu:
- Uwagi:
Efekty uczenia się
Profil ogólnoakademicki - wiedza
- Efekt WWZM_01
- Zna podstawową terminologię w zakresie nauk technicznych, rozumie jej źródła i zastosowania w praktyce.
Weryfikacja: Kolokwium z części teoretycznej obowiązującej na wykładzie.
Powiązane efekty kierunkowe:
K_W01
Powiązane efekty obszarowe:
S1A_W01, S1A_W05, S1A_W07
- Efekt WWZM_02
- Zna wybrane, podstawowe, teorie i koncepcje w zakresie nauk technicznych i potrafi je zastosować w praktyce.
Weryfikacja: Kolokwium z części teoretycznej obowiązującej na wykładzie.
Powiązane efekty kierunkowe:
K_W09
Powiązane efekty obszarowe:
- Efekt WWZM_03
- Ma elementarną wiedzę o różnych rodzajach struktur społecznych i instytucjach życia społecznego oraz zachodzących między nimi relacjach.
Weryfikacja: Kolokwium z części teoretycznej obowiązującej na wykładzie.
Powiązane efekty kierunkowe:
K_W02
Powiązane efekty obszarowe:
S1A_W01, S1A_W02, S1A_W04, S1A_W05, S1A_W06, S1A_W07, S1A_W08
Profil ogólnoakademicki - umiejętności
- Efekt UWZM_01
- Potrafi wykorzystać poznane teorie i konstrukcje do analizy podstawowych problemów.
Weryfikacja: Kolokwium z części praktycznej obowiązującej na laboratorium.
Powiązane efekty kierunkowe:
K_U02
Powiązane efekty obszarowe:
S1A_U01, S1A_U02, S1A_U04, S1A_U06, S1A_U07
- Efekt UWZM_02
- Potrafi samodzielnie zdobywać wiedzę i rozwijać swe zdolności, korzystając z różnych źródeł i nowoczesnych technologii.
Weryfikacja: Kolokwium z części praktycznej obowiązującej na laboratorium.
Powiązane efekty kierunkowe:
K_U06
Powiązane efekty obszarowe:
S1A_U06, S1A_U08, S1A_U09, S1A_U10
- Efekt UWZM_03
- Potrafi posługiwać się poznanymi zasadami, teoriami i konstrukcjami w podejmowanej i prowadzonej działalności, przewiduje skutki ewentualnych zdarzeń.
Weryfikacja: Kolokwium z części praktycznej obowiązującej na laboratorium.
Powiązane efekty kierunkowe:
K_U04
Powiązane efekty obszarowe:
S1A_U01, S1A_U02, S1A_U03, S1A_U04, S1A_U05, S1A_U06, S1A_U07, S1A_U08
Profil ogólnoakademicki - kompetencje społeczne
- Efekt KWZM_01
- Ma świadomość poziomu swojej wiedzy i umiejętności, rozumie konieczność dalszego doskonalenia się zawodowego i rozwoju osobistego.
Weryfikacja: Rozwiązywanie prostych przykładów, tworzenie prostych konstrukcji i analiza ich odpowiedzi na obciążenia zewnętrzne.
Powiązane efekty kierunkowe:
K_K02
Powiązane efekty obszarowe:
S1A_K01, S1A_K02, S1A_K04, S1A_K06
- Efekt KWZM_02
- Odpowiedzialnie przygotowuje się do pełnienia ważnej roli w społeczeństwie, projektuje i wykonuje zadania w zakresie pracy zawodowej.
Weryfikacja: Rozwiązywanie prostych przykładów, tworzenie prostych konstrukcji i analiza ich odpowiedzi na obciążenia zewnętrzne.
Powiązane efekty kierunkowe:
K_K01
Powiązane efekty obszarowe:
S1A_K01, S1A_K02, S1A_K03, S1A_K04, S1A_K05, S1A_K07