- Nazwa przedmiotu:
- Rozwiązywanie kompleksowych problemów
- Koordynator przedmiotu:
- dr inż. Stanisław Skotnicki, dr inż. Przemysław Siemiński, mgr inż. Bogusław Kozicki
- Status przedmiotu:
- Obowiązkowy
- Poziom kształcenia:
- Studia I stopnia
- Program:
- Mechanika i Budowa Maszyn
- Grupa przedmiotów:
- Obowiązkowe
- Kod przedmiotu:
- 309
- Semestr nominalny:
- 5 / rok ak. 2015/2016
- Liczba punktów ECTS:
- 2
- Liczba godzin pracy studenta związanych z osiągnięciem efektów uczenia się:
- brak
- Liczba punktów ECTS na zajęciach wymagających bezpośredniego udziału nauczycieli akademickich:
- brak
- Język prowadzenia zajęć:
- polski
- Liczba punktów ECTS, którą student uzyskuje w ramach zajęć o charakterze praktycznym:
- brak
- Formy zajęć i ich wymiar w semestrze:
-
- Wykład15h
- Ćwiczenia0h
- Laboratorium15h
- Projekt0h
- Lekcje komputerowe0h
- Wymagania wstępne:
- Zaliczenie Technik komputerowych.
- Limit liczby studentów:
- zgodnie z zarządzeniem Rektora
- Cel przedmiotu:
- Zaznajomienie z podstawami programowania obiektowego na przykładzie języków Visual Basic i Visual C++.
- Treści kształcenia:
- 1. Modelowanie mechanizmów w systemach CAD. Za pomocą systemu CAD utworzenie modelu mechanizmu i badanie jego ruchliwości. Analiza kinematyczna mechanizmu: symulacja ruchu, określenie parametrów kinematycznych ( prędkość, przyspieszenie).
2. Modelowanie zespołów maszynowych w systemach CAD. Za pomocą systemu CAD utworzenie modelu typowego zespołu (np. : sprzęgło, hamulec). Parametryzacja części w zespole. Powiązanie ze sobą wymiarów wybranych części zespołu. Zmiana wymiarów części w zespole za pomocą pliku zewnętrznego.
3. Reprezentacje komputerowe modeli 3D
a. Przegląd technik przyrostowych. Opis metody FDM (Fused Deposition Modeling), czyli modelowania ciekłym tworzywem termoplastycznym. Metoda FDM na maszynach RepRap jest oznaczana jako FFF (Fused Filament Fabrication).
b. STL i OBJ - formaty plików do przenoszenia geometrii 3D w postaci powłokowej siatki trójkątów do oprogramowania programującego drukarki 3D (CatalystEx lub Slid3r). Pokazanie wpływu parametrów tolerancji liniowej na dokładność geometrii siatkowej. Generowanie plików STL i OBJ w 3D CAD -
c. Pokazanie wpływy pochylenia ścian geometrii na generowanie struktur podporowych w metodzie FDM (przykład realizowany w 3D CAD i oprogramowaniu drukarki 3D). Pokazanie wpływu orientacji modelu w przestrzeni drukarki 3D na wytrzymałość prototypu (kierunki włókien wypełnienia) i jakość powierzchni (efekt schodkowy). Analiza ilości zużycia materiału modelowego i podporowego oraz czas wydruku 3D.
d. Zamodelowanie w 3D CAD modelu i jego ewentualny wydruk na drukarce 3D wykonującej prototypy w metody FDM (Dimension 1200BST) lub FFF (RepRap).
4. Inżynieria odwrotna
a. Ogólne wprowadzenie do inżynierii odwrotnej i metod skanowania 3D. Przykłady zastosowań.
b. Skanowanie 3D modelu redukcyjnego nadwozia przy pomocy systemu pomiarowego światła białego (np. ScanBright firmy Smarttech) lub skanerem laserowym (np. David Laserscaner) bez lub ze stolikiem obrotowym.
c. Łączenie i obróbka chmur punktów oraz powłokowych siatek trójkątów w systemach 3D CAD (Mesh3D, ScanTo3D w SolidWorks).
d. Rozpinanie powierzchni NURBS na siatkach trójkątów w systemach 3D CAD (np. module ScanTo3D systemu SolidWorks) oraz analiza dokładności odwzorowania geometrii.
5. Projektowanie w środowisku rozproszonym
a. Projektowanie w środowisku rozproszonym a praca grupowa
b. Reguły pracy grupowej i prawa dostępu
c. Mechanizmy kontrola wersji
d. Praca grupowa a systemy PDM/PLM
e. Inżynieria współbieżna a sekwencyjna
f. Współpraca asynchroniczna i synchroniczna
g. Standardy w pracy na odległość
h. Przegląd systemów pracy grupowej
i. Integracja systemów CAD/CAM z systemami pracy grupowej
- Metody oceny:
- kolokwia
- Egzamin:
- nie
- Literatura:
- Materiały udostępniane przez prowadzących.
- Witryna www przedmiotu:
- brak
- Uwagi:
- brak
Efekty uczenia się