- Nazwa przedmiotu:
- Metody Monte Carlo
- Koordynator przedmiotu:
- .
- Status przedmiotu:
- Obowiązkowy
- Poziom kształcenia:
- Studia II stopnia
- Program:
- Matematyka
- Grupa przedmiotów:
- Wspólne
- Kod przedmiotu:
- M2MMC
- Semestr nominalny:
- 3 / rok ak. 2015/2016
- Liczba punktów ECTS:
- 6
- Liczba godzin pracy studenta związanych z osiągnięciem efektów uczenia się:
- 150 godzin samodzielnej pracy studenta poświęconej na zapoznanie się z literaturą przedmiotu, poznaniem metod i algorytmów, zrozumieniem zasad działania algorytmów, poznaniem teorii i twierdzeń
- Liczba punktów ECTS na zajęciach wymagających bezpośredniego udziału nauczycieli akademickich:
- 6
- Język prowadzenia zajęć:
- polski
- Liczba punktów ECTS, którą student uzyskuje w ramach zajęć o charakterze praktycznym:
- Formy zajęć i ich wymiar w semestrze:
-
- Wykład30h
- Ćwiczenia15h
- Laboratorium15h
- Projekt0h
- Lekcje komputerowe0h
- Wymagania wstępne:
- Analiza matematyczna (rachunek różniczkowy i całkowy wielu zmiennych), Rachunek prawdopodobieństwa (pojęcie prawdopodobieństwa, zmiennej losowej, niezależności zmiennych losowych, rozkładu prawdopodobieństwa, wielowymiarowego rozkładu prawdopodobieństwa, gęstości prawdopodobieństwa, momentów zmiennych losowych, znajomość twierdzeń granicznych, podstawowe wiadomości o łańcuchach Markowa na przestrzeniach dyskretnych i ciągłych, podstawowe wiadomości o twierdzeniach ergodycznych dla łańcuchów Markowa), Statystyka matematyczna (pojęcie próby, hipotezy statystycznej, testu statystycznego, podstawowe wiadomości o wnioskowaniu bayesowskim)
- Limit liczby studentów:
- Bez limitu
- Cel przedmiotu:
- Celem kształcenia w zakresie przedmiotu Metody Monte Carlo jest zaznajomienie studentów ze współczesnymi metodami symulacji probabilistycznych i statystycznych, wykorzystujących narzędzia i algorytmy komputerowe. Student pozna odpowiednie algorytmy, metody i niezbędne twierdzenia matematyczne, a także podstawowe dziedziny zastosowań tych metod oraz będzie umieć wykorzystywać poznane metody w trakcie dalszej kariery naukowej i zawodowej.
- Treści kształcenia:
- Generatory probabilistyczne o rozkładzie jednostajnym:
Generatory fizyczne a generatory programowe. Generator von Neumanna. Podstawowe informacje o generatorach o rozkładzie jednostajnym. Okres i struktura przestrzenna generatora. Zastosowanie testów statystycznych: niezależności i zgodności z rozkładem do sprawdzania jakości generatora. Problemy z określeniem jakości generatora.
Generatory liniowe:
Generatory liniowe. Przykłady twierdzeń o okresie prostych generatorów liniowych. Generatory Fibonacciego. Uogólnione generatory Fibonacciego.
Generatory nieliniowe:
Generatory nieliniowe, bazujące na operacji odwracania modulo i generatory kwadratowe. Kombinowanie generatorów.
Ogólne metody generowania z dowolnych rozkładów prawdopodobieństwa:
Metoda odwracania dystrybuanty. Metoda eliminacji. Metoda ilorazu równomiernego. Metoda superpozycji rozkładów. Wady i zalety poszczególnych metod. Przykłady wykorzystania różnych metod generowania z dowolnych rozkładów prawdopodobieństwa.
Szczegółowe metody generowania z określonych rozkładów prawdopodobieństwa:
Generowanie zmiennych z rozkładu normalnego – algorytm Boxa – Mullera, algorytm Marsaglii i algorytm Marsaglii – Braya. Przykłady szczegółowych metod generowania z innych rozkładów prawdopodobieństwa.
Generowanie z wielowymiarowych rozkładów prawdopodobieństwa:
Generowanie z wielowymiarowego rozkładu normalnego metodą dekompozycji macierzy kowariancji. Przekleństwo wielowymiarowości. Metoda przekształceń.
Całkowanie metodami Monte Carlo (MC):
Wprowadzenie – igła Buffona. Metoda crude Monte Carlo. Przypomnienie probabilistycznych twierdzeń granicznych (centralnego twierdzenia granicznego i prawa wielkich liczb). Zastosowanie probabilistycznych twierdzeń granicznych w określaniu zbieżności metod MC.
Całkowanie metodami Monte Carlo (MC):
Metoda próbkowania ważonego. Metoda zmiennych antytetycznych. Metoda zmiennych kontrolnych. Problem doboru optymalnych parametrów dla metod próbkowania ważonego i zmiennych antytetycznych.
Optymalizacja metodami Monte Carlo (MC):
Podstawowa metoda optymalizacji algorytmem MC. Metoda gradientowa. Metoda symulowanego wyżarzania. Modele brakujących danych.
Zastosowanie metod Monte Carlo:
Błąd metod Monte Carlo a błąd numerycznych metod deterministycznych. Zagadnienie całkowania metodami MC jako problem statystyki matematycznej. Obliczanie poziomu istotności testu metodami MC. Inne zastosowania metod MC – zagadnienia geometryczne, zagadnienia z matematyki ubezpieczeniowej i matematyki finansowej. Zalety i ograniczenia metod MC.
Przypomnienie podstawowych informacji o łańcuchach Markowa:
Własność Markowa. Łańcuchy Markowa na przestrzeniach dyskretnych i ciągłych. Prawdopodobieństwo przejścia i jądro przejścia. Własności łańcuchów Markowa – jednorodność, nieprzywiedlność, nieokresowość, powracalność. Twierdzenia ergodyczne dla łańcuchów Markowa.
Metody Markov Chain Monte Carlo (MCMC):
Algorytm Metropolisa – Hastingsa (MH). Problem wyboru gęstości proponującej – niezależny algorytm MH, błądzenie przypadkowe, inne gęstości proponujące. Twierdzenia dotyczące własności łańcucha Markowa wygenerowanego algorytmem MH. Dwuwymiarowy próbnik Gibbsa.Wielowymiarowy próbnik Gibbsa. Twierdzenia dotyczące własności łańcucha Markowa wygenerowanego próbnikiem Gibbsa. Algorytm MH a próbnik Gibbsa – porównanie własności. Hybrydyzowanie algorytmów MCMC przez mieszaninę i cykl.
Zastosowania metod MCMC:
Przykładowe zastosowania metod MCMC – wnioskowanie bayesowskie za pomocą DAG-ów (direct, acyclic graph), fizyczne badania magnetyzacji, restauracja i odszumianie obrazów. Wady i zalety metod MCMC. Problem diagnostyki zbieżności metod MCMC. Przykłady metod diagnostyki zbieżności.
Bootstrap:
Zasada bootstrapu. Testowanie hipotez metodą bootstrap. Ważony bootstrap. Metoda jackknife.
- Metody oceny:
- .
- Egzamin:
- tak
- Literatura:
- .
- Witryna www przedmiotu:
- brak
- Uwagi:
Efekty uczenia się
Profil ogólnoakademicki - wiedza
- Efekt MMC_W_01
- Zna metody generowania rozkładów prawdopodobieństwa, metody Monte Carlo całkowania i optymalizacji, podstawowe metody Markov Chain Monte Carlo, podstawowe metody repróbkowania (bootstrap i jackknife); rozumie podstawy matematyczne tych metod.
Weryfikacja: Egzamin pisemny
Powiązane efekty kierunkowe:
SMAD_W03
Powiązane efekty obszarowe:
X2A_W02, X2A_W04, X2A_W06
Profil ogólnoakademicki - umiejętności
- Efekt MMC_U_01
- Umie generować próbki pseudolosowe z różnych rozkładów prawdopodobieństwa; umie stosować metody Monte Carlo do całkowania i zagadnień optymalizacyjnych; potrafi używać metod Monte Carlo Markov Chain; umie stosować metody bootstrap i jackknife.
Weryfikacja: Egzamin pisemny, praca w laboratorium komputerowym
Powiązane efekty kierunkowe:
SMAD_U04
Powiązane efekty obszarowe:
X2A_U01, X2A_U02, X2A_U04