Nazwa przedmiotu:
Topologia
Koordynator przedmiotu:
Dr hab. Danuta Kołodziejczyk, prof. PW.
Status przedmiotu:
Obowiązkowy
Poziom kształcenia:
Studia I stopnia
Program:
Matematyka
Grupa przedmiotów:
Wspólne
Kod przedmiotu:
1120-MA000-LSP-0235
Semestr nominalny:
3 / rok ak. 2015/2016
Liczba punktów ECTS:
5
Liczba godzin pracy studenta związanych z osiągnięciem efektów uczenia się:
1. godziny kontaktowe – 68 h; w tym a) obecność na wykładach – 30 h b) obecność na ćwiczeniach – 30 h c) obecność na egzaminie – 5 h d) konsultacje – 5 h 2. praca własna studenta – 55 h; w tym a) przygotowanie do ćwiczeń i do kolokwiów – 30 h b) zapoznanie się z literaturą – 10 h c) przygotowanie do egzaminu – 15 h Razem 123 h, co odpowiada 5 pkt. ECTS
Liczba punktów ECTS na zajęciach wymagających bezpośredniego udziału nauczycieli akademickich:
1. obecność na wykładach – 30 h 2. obecność na ćwiczeniach – 30 h 3. obecność na egzaminie – 3 h 4. konsultacje – 5 h Razem 68 h, co odpowiada 3 pkt. ECTS
Język prowadzenia zajęć:
polski
Liczba punktów ECTS, którą student uzyskuje w ramach zajęć o charakterze praktycznym:
Formy zajęć i ich wymiar w semestrze:
  • Wykład30h
  • Ćwiczenia30h
  • Laboratorium0h
  • Projekt0h
  • Lekcje komputerowe0h
Wymagania wstępne:
Elementy logiki i teorii mnogości, Algebra liniowa z geometrią, Analiza Matematyczna – w zakresie 1 roku studiów licencjackich.
Limit liczby studentów:
Bez limitu
Cel przedmiotu:
Zapoznanie z podstawowymi pojęciami i metodami Topologii i możliwościami ich zastosowania w innych dziedzinach matematyki.
Treści kształcenia:
1. Wprowadzenie – Topologia jako nauka o niezmiennikach homeomorfizmów, uwagi o topologicznej klasyfikacji przestrzeni. 2. Przestrzenie metryczne. Kule, zbiory otwarte i domknięte w przestrzeniach metrycznych. 3. Przestrzenie topologiczne. Topologia indukowana przez metrykę. Porównywanie topologii. Wnętrze, domknięcie i brzeg w przestrzeniach topologicznych oraz ich własności. Zbiory gęste i brzegowe. 4. Podprzestrzeń przestrzeni topologicznej. Baza topologii, twierdzenie charakteryzacyjne. Iloczyn kartezjański przestrzeni topologicznych. Przestrzenie Hausdorffa. 5. Przekształcenia ciągłe i ich własności, równoważne charakteryzacje ciągłości. Homeomorfizmy i ich niezmienniki. 6. Przestrzenie metryczne zupełne. Zasada Banacha o kontrakcji . Tw. Cantora i Tw. Baire'a. Własność punktu stałego dla przekształceń i przestrzeni. Twierdzenie Brouwera o punkcie stałym (informacyjnie). 7. Przestrzenie zwarte i ich własności. Równoważne warunki zwartości w przestrzeniach metrycznych. Przekształcenia ciągłe przestrzeni zwartych. Tw. Tichonowa o zwartości iloczynu kartezjańskiego przestrzeni zwartych (przypadek skończony). Podzbiory zwarte przestrzeni euklidesowych - charakteryzacja. Ciągłe i różnowartościowe przekształcenie przestrzeni zwartej na przestrzeń Hausdorffa jest homeomorfizmem. Tw. Weierstrasssa. Przestrzenie ośrodkowe. 8. Przestrzenie spójne i ich własności. Przekształcenia ciągłe przestrzeni spójnych. Tw. Darboux. Łukowa spójnosć. Składowe spójnosci. 9. Przestrzenie ilorazowe. O grupie podstawowej, jednospójności i hipotezie Poincarego (informacyjnie).
Metody oceny:
Ćwiczenia – do zdobycia 50 pkt. – za kolokwia (za 20 i 25 pkt.) i za aktywność na zajęciach (5 pkt). Warunkiem koniecznym zaliczenia jest niezerowa aktywność i zaliczenie drugiego kolokwium (na co połowę punktów) oraz uzyskanie co najmniej połowę (25,5 punktów) z ćwiczeń łącznie. Student, który nie zaliczył ćwiczeń może zaliczać je poprzez część zadaniową egzaminu otrzymując wówczas za ćwiczenia i część zadaniową egzaminu 2x uzyskany wynik. Egzamin pisemny 50 pkt. (zadania 20 pkt. + test 30 pkt.). Z części zadaniowej można być zwolnionym, jeśli z ćwiczeń zdobędzie się co najmniej 30,5 punktów. Wtedy za część zadaniową egzaminu otrzymuje się ilość punktów proporcjonalną do wyniku z ćwiczeń. Wstępna ocena z egzaminu jest ustalana na podstawie sumy punktów z ćwiczeń i egzaminu pisemnego (od 51pkt – 3.0, od 61pkt - 3.5, od 71pkt – 4.0, od 81pkt – 4.5, od 91pkt – 5.0). Ostateczna ocena jest ustalana na egzaminie ustnym.
Egzamin:
tak
Literatura:
1. Stanisław Betley, Józef Chaber, Elzbieta Pol i Roman Pol, Topologia (2013). 2. R. Engelking, K. Sieklucki, Geometria I Topologia, cz. II. Topologia, Warszawa, 1980. 3. O. Ya. Viro, O. A. Ivanov, N. Yu. Netsvetaev, V. M. Kharlamo, Elementary Topology Problem Textbook. (dostępna w pdf w Internecie). 4. K. Kuratowski, Wstęp do teorii mnogości i topologii, Warszawa, 2004. 5. C. Kosniowski, Wprowadzenie do topologii algebraicznej, Poznań 1999.
Witryna www przedmiotu:
http://www.mini.pw.edu.pl/~dkolodz/www/?For_Students:Wydz._Matematyki_i_Nauk_Informacyjnych
Uwagi:

Efekty uczenia się

Profil ogólnoakademicki - wiedza

Efekt TOP_W01
Zna podstawowe pojęcia i koncepcje topologii takie jak: przestrzeń metryczna i topologiczna, zbiory otwarte i domknięte, domknięcie i wnętrze w przestrzeniach metrycznych i topologicznych, podprzestrzeń, przestrzeń Hausdorffa, baza przestrzeni topologicznej, produkt kartezjański, przestrzeń ilorazowa, Zna definicje przekształcenia ciągłego i homeomorfizmu oraz równoważne charakteryzacje ciągłości. Rozumie ideę topologicznej klasyfikacji przestrzeni.
Weryfikacja: Egzamin, kolokwia, aktywność na zajęciach
Powiązane efekty kierunkowe: ML_W12
Powiązane efekty obszarowe: X1A_W01, X1A_W02
Efekt TOP_W02
Zna definicję zwartości przestrzeni topologicznej, przykłady i podstawowe własności zbiorów zwartych. Zna warunki równoważne zwartości w przestrzeniach metrycznych oraz charakteryzację zwartych podzbiorów przestrzeni euklidesowych. Zna własności przekształceń ciągłych określonych na przestrzeniach zwar-tych. Zna pojęcie ośrodkowości przestrzeni topologicznej.
Weryfikacja: Egzamin, kolokwia, aktywność na zajęciach
Powiązane efekty kierunkowe: ML_W12
Powiązane efekty obszarowe: X1A_W01, X1A_W02
Efekt TOP_W03
Zna pojęcia przestrzeni spójnej i łukowo spójnej, najprostsze własności przestrzeni spójnych oraz pojęcie składowych spójności. Zna własności przekształceń ciągłych określonych na przestrzeniach spójnych.
Weryfikacja: Egzamin, kolokwia, aktywność na zajęciach
Powiązane efekty kierunkowe: ML_W12
Powiązane efekty obszarowe: X1A_W01, X1A_W02
Efekt TOP_W04
Wie o możliwościach wykorzystania metod topologicznych w innych dyscyplinach matematyki
Weryfikacja: Egzamin, kolokwia, aktywność na zajęciach
Powiązane efekty kierunkowe: ML_W12
Powiązane efekty obszarowe: X1A_W01, X1A_W02

Profil ogólnoakademicki - umiejętności

Efekt TOP_U01
Potrafi rozpoznawać podstawowe własności topologiczne podzbiorów przestrzeni metrycznej i topologicznej; znajdować wnętrze, domknięcie i brzeg zbiorów w przestrzeniach metrycznych i topologicznych (ze szczególnym uwzględnieniem podzbiorów przestrzeni euklidesowych).
Weryfikacja: Egzamin, kolokwia, aktywność na zajęciach
Powiązane efekty kierunkowe: ML_U12
Powiązane efekty obszarowe: X1A_U01, X1A_U06, X1A_U07
Efekt TOP_U02
Potrafi analizować problemy matematyczne i stosować poznane twierdzenia topologiczne do wyciągania wniosków.
Weryfikacja: Egzamin, kolokwia, aktywność na zajęciach
Powiązane efekty kierunkowe: ML_U09, ML_U10, ML_U12
Powiązane efekty obszarowe: X1A_U01, X1A_U02, X1A_U01, X1A_U02, X1A_U01, X1A_U06, X1A_U07
Efekt TOP_U03
Potrafi zastosować poznane twierdzenia w innych dziedzinach matematyki (np. zasadę Banacha o kontrakcji w Analizie, a Twierdzenie Baire’a do dowodu istnienia obiektów o szczególnych własnościach).
Weryfikacja: Egzamin, kolokwia, aktywność na zajęciach
Powiązane efekty kierunkowe:
Powiązane efekty obszarowe:

Profil ogólnoakademicki - kompetencje społeczne

Efekt TOP_K01
Rozumie potrzebę uczenia się przez całe życie.
Weryfikacja: Egzamin, kolokwia, aktywność na zajęciach
Powiązane efekty kierunkowe: ML_KS01
Powiązane efekty obszarowe: X1A_K01
Efekt TOP_K02
Potrafi odpowiednio określić priorytety służące realizacji określonego zadania
Weryfikacja: Egzamin, kolokwia, aktywność na zajęciach
Powiązane efekty kierunkowe: ML_KS03
Powiązane efekty obszarowe: X1A_K03
Efekt TOP_K03
Rozumie potrzebę podnoszenia kompetencji zawodowych i osobistych
Weryfikacja: Egzamin, kolokwia, aktywność na zajęciach
Powiązane efekty kierunkowe: ML_KS05
Powiązane efekty obszarowe: X1A_K05