- Nazwa przedmiotu:
- Matematyka II
- Koordynator przedmiotu:
- dr Eugenia Ciborowska–Wojdyga
- Status przedmiotu:
- Obowiązkowy
- Poziom kształcenia:
- Studia I stopnia
- Program:
- Biotechnologia
- Grupa przedmiotów:
- Wspólne
- Kod przedmiotu:
- brak
- Semestr nominalny:
- 2 / rok ak. 2010/2011
- Liczba punktów ECTS:
- 7
- Liczba godzin pracy studenta związanych z osiągnięciem efektów uczenia się:
- Liczba punktów ECTS na zajęciach wymagających bezpośredniego udziału nauczycieli akademickich:
- Język prowadzenia zajęć:
- polski
- Liczba punktów ECTS, którą student uzyskuje w ramach zajęć o charakterze praktycznym:
- Formy zajęć i ich wymiar w semestrze:
-
- Wykład60h
- Ćwiczenia30h
- Laboratorium0h
- Projekt0h
- Lekcje komputerowe0h
- Wymagania wstępne:
- brak
- Limit liczby studentów:
- Cel przedmiotu:
- brak
- Treści kształcenia:
- Odległość punktów w przestrzeniach dwu i więcej wymiarowych. Otoczenie punktu. Zbiory otwarte i domknięte. Obszary spójne i jednospójne. Pojęcie krzywej regularnej i jej parametryzacji.
Funkcje wielu zmiennych. Dziedzina i wykres funkcji dwóch zmiennych. Granica funkcji, ciągłość funkcji. Pochodne cząstkowe. Ekstrema funkcji wielu zmiennych. Warunki konieczne i warunki dostateczne istnienia ekstremum. Wartość najmniejsza i wartość największa funkcji ciągłej w zbiorze domkniętym. Funkcje uwikłane jednej i wielu zmiennych. Ekstrema funkcji uwikłanej.
Całki wielokrotne. Obszar normalny względem osi i względem płaszczyzny współrzędnych. Zamiana całki wielokrotnej na całkę iterowaną. Współrzędne biegunowe, walcowe i sferyczne. Zamiana zmiennych w całce wielokrotnej. Zastosowanie całek w geometrii i fizyce.
Liczby zespolone. Definicja działań arytmetycznych i podstawowe własności. Postać trygonometryczna liczby zespolonej. Część rzeczywista i część urojona liczby zespolonej. Potęgowanie i pierwia-stkowanie liczb zespolonych. Ciągi i szeregi.
Funkcje zmiennej zespolonej. Pochodna. Równania Cauchy-Riemanna. Całka funkcji zespolonej po krzywej regularnej. Wzór całkowy i twierdzenie całkowe Cauchy'ego. Szeregi zespolone. Szereg Taylora i szereg Laurenta dla funkcji zespolonej. Funkcje analityczne. Klasyfikacja punktów osobliwych funkcji zespolonej. Residuum funkcji zespolonej. Obliczanie całki za pomocą residuów.
Całka krzywoliniowa skierowana i nieskierowana funkcji rzeczywistej. Pole wektorowe. Twierdzenie Greena.
Zastosowanie całek w geometrii i fizyce.
Przekształcenie Laplace'a i jego własności. Przekształcenie odwrotne – metoda ułamków prostych, residuów, splot. Zastosowanie przekształcenia Laplace'a do rozwiązywania równań różniczkowych zwyczajnych i o pochodnych cząstkowych.
- Metody oceny:
- egzamin
- Egzamin:
- Literatura:
- brak
- Witryna www przedmiotu:
- Uwagi:
Efekty uczenia się