Nazwa przedmiotu:
Algebra i geometria analityczna
Koordynator przedmiotu:
dr Matylda Jakubowska
Status przedmiotu:
Obowiązkowy
Poziom kształcenia:
Studia I stopnia
Program:
Zarządzanie
Grupa przedmiotów:
Wspólne
Kod przedmiotu:
ALGEO
Semestr nominalny:
1 / rok ak. 2011/2012
Liczba punktów ECTS:
4
Liczba godzin pracy studenta związanych z osiągnięciem efektów uczenia się:
-
Liczba punktów ECTS na zajęciach wymagających bezpośredniego udziału nauczycieli akademickich:
Język prowadzenia zajęć:
polski
Liczba punktów ECTS, którą student uzyskuje w ramach zajęć o charakterze praktycznym:
Formy zajęć i ich wymiar w semestrze:
  • Wykład15h
  • Ćwiczenia15h
  • Laboratorium0h
  • Projekt0h
  • Lekcje komputerowe0h
Wymagania wstępne:
Słowa kluczowe (prerekwizyty): zbiór, funkcja, równanie algebraiczne, nierówność algebraiczna, logarytm, ciąg liczbowy. figura geometryczna, bryła.
Limit liczby studentów:
-
Cel przedmiotu:
Opanowanie podstawowych pojęć matematycznych: macierz, wyznacznik, układ równań, krzywa, powierzchnia, umiejętności operowania tymi pojęciami i zastosowania ich do rozwiązywania problemów technicznych i ekonomicznych oraz przygotowanie do zastosowań w dalszym toku studiów.
Treści kształcenia:
WYKŁAD 1.Struktury algebraiczne 2.Liczby zespolone 3.Zastosowanie liczb zespolonych 4.Macierze. 5.Macierze i wyznaczniki 6.Zastosowanie macierzy 7.Uklady równań liniowych 8.Uklady równań liniowych c.d. 9.Wektory 10.Krzywe drugiego stopnia 11.Krzywe drugiego stopnia c.d 12.Płaszczyzna 13.Prosta w przestrzeni 14.Powierzchnie 15.Powierzchnie c.d. ĆWICZENIA 1. Struktury algebraiczne. 2. Liczby zespolone. 3. Zastosowania liczb zespolonych. 4. Macierze. 5. Macierze i wyznaczniki. 6. Zastosowanie macierzy. 7. Układy równań liniowych. 8. Układy równań liniowych cd. 9. Wektory. 10. Krzywe stożkowe. 11. Krzywe stożkowe cd. 12. Płaszczyzna. 13. Prosta w przestrzeni. 14. Powierzchnie. 15. Powierzchnie cd.
Metody oceny:
brak
Egzamin:
tak
Literatura:
1. R. Leitner: Zarys matematyki wyższej cz. I, WNT, Warszawa 1995. 2. T. Trajdos: Matematyka cz. III, WNT, Warszawa 1998. 3. E. Stolarska i inni: Algebra liniowa dla ekonometryków, PWN, Warszawa 1995. 4. J. Klukowski: Algebra w zadaniach, OWPW, Warszawa 1994
Witryna www przedmiotu:
-
Uwagi:

Efekty uczenia się

Profil ogólnoakademicki - wiedza

Efekt Wpisz opis
Zna zasady i własności działań na macierzach i wyznacznikach, zna procedury rozwiązywania układu m równań liniowych z n niewiadomymi, ma wiedzę o rachunku wektorowym na płaszczyźnie i przestrzeni trójwymiarowej, zna równania prostej, płaszczyzny i krzywych stożkowych.
Weryfikacja: Warunkiem zaliczenia przedmiotu jest zaliczenie pracy kontrolnej, zdanie egzaminu i obecność na zajęciach. Prace kontrolne i egzamin oceniane są w systemie punktowym. Warunkiem zaliczenia pracy kontrolnej i egzaminu jest uzyskanie minimum 50 % maksymalnej liczby punktów.
Powiązane efekty kierunkowe: Wpisz opis
Powiązane efekty obszarowe: S1A_W01, S1A_W03, S1A_W04, S1A_W05, S1A_W06, S1A_W07, S1A_W08, S1A_W09, S1A_W10, S1A_W11

Profil ogólnoakademicki - umiejętności

Efekt Wpisz opis
potrafi korzystać z zapisu macierzowego w modelowaniu zależności liniowych oraz rozwiązywać układy równań liniowych o dowolnych wymiarach
Weryfikacja: Wpisz opis
Powiązane efekty kierunkowe:
Powiązane efekty obszarowe:

Profil ogólnoakademicki - kompetencje społeczne

Efekt Wpisz opis
dba o ścisłe wyrażenie swoich sądów, ma zdolność do posługiwania się formalnymi modelami w różnych obszarach nauk ekonomicznych
Weryfikacja: Wpisz opis
Powiązane efekty kierunkowe:
Powiązane efekty obszarowe: