Nazwa przedmiotu:
Matematyka
Koordynator przedmiotu:
dr Tadeusz Jagodziński
Status przedmiotu:
Obowiązkowy
Poziom kształcenia:
Studia I stopnia
Program:
Gospodarka Przestrzenna
Grupa przedmiotów:
Obowiązkowe
Kod przedmiotu:
Semestr nominalny:
1 / rok ak. 2010/2011
Liczba punktów ECTS:
5
Liczba godzin pracy studenta związanych z osiągnięciem efektów uczenia się:
Liczba punktów ECTS na zajęciach wymagających bezpośredniego udziału nauczycieli akademickich:
Język prowadzenia zajęć:
polski
Liczba punktów ECTS, którą student uzyskuje w ramach zajęć o charakterze praktycznym:
Formy zajęć i ich wymiar w semestrze:
  • Wykład30h
  • Ćwiczenia30h
  • Laboratorium0h
  • Projekt0h
  • Lekcje komputerowe0h
Wymagania wstępne:
Podstawowe założenia programowe matematyki na poziomie szkoły średniej.
Limit liczby studentów:
Cel przedmiotu:
Rozumienie matematycznego opisu przestrzeni. Znajomość takich pojęć jak wymiar i baza. Posługiwanie się opisem matematycznym obiektów takich jak prosta, płaszczyzna, twory stopnia dwa na płaszczyźnie i w przestrzeni,umiejętność przeprowadzenia badania przebiegu zmienności funkcji jednej zmiennej ze szkicowaniem wykresu włącznie. Znajdowanie ekstremów funkcji wielu zmiennych i funkcji uwikłanej. Przybliżanie wartości funkcji jednej zmiennej przy użyciu szeregu potęgowego wraz z oszacowaniem błędu przybliżenia. Znajdowanie wartości ekstremalnych funkcji wielu zmiennych na zbiorze ograniczonym. Znajomość podstawowych zastosowań geometrycznych całek pojedynczych i wielokrotnych. Umiejętność rozwiązywania prostych równań różniczkowych rzędy 1 i sprowadzalnych do rzędu 1.
Treści kształcenia:
Podstawowe struktury algebraiczne. Ciało liczb zespolonych. Przestrzeń liniowa, odwzorowania liniowe. Elementy algebry liniowej: macierze, wyznaczniki, ich własności. Układy równań liniowych. Twierdzenie Kroneckera-Capelliego. Metody rozwiązywania układów równań liniowych-wzory Cramera, eliminacja Gaussa. Rachunek wektorowy-iloczyn skalarny, iloczyn wektorowy, iloczyn mieszany-własności, metody obliczania, zastosowania. Elementy geometrii analitycznej w R3: prosta, płaszczyzna, powierzchnie stopnia drugiego w R3. Równania krzywych w R2 i w R3.
Metody oceny:
Wykład - egzamin w formie pisemnej. Ćwiczenia - 2 kolokwia w semestrze.
Egzamin:
Literatura:
R.Leitner – „Zarys matematyki wyższej, cz. I” WNT. G. Gdowski, E.Pluciński – „Zbiór zadań z rachunku wektorowego i geometrii analitycznej”, Oficyna Wydawnicza PW.
Witryna www przedmiotu:
Uwagi:

Efekty uczenia się