Nazwa przedmiotu:
Podstawy fotoniki
Koordynator przedmiotu:
Prof. dr hab. inż. Krzysztof Patorski , prof. zwyczajny PW
Status przedmiotu:
Obowiązkowy
Poziom kształcenia:
Studia I stopnia
Program:
Mechatronika
Grupa przedmiotów:
Obowiązkowe
Kod przedmiotu:
Semestr nominalny:
5 / rok ak. 2009/2010
Liczba punktów ECTS:
5
Liczba godzin pracy studenta związanych z osiągnięciem efektów uczenia się:
Liczba punktów ECTS na zajęciach wymagających bezpośredniego udziału nauczycieli akademickich:
Język prowadzenia zajęć:
polski
Liczba punktów ECTS, którą student uzyskuje w ramach zajęć o charakterze praktycznym:
Formy zajęć i ich wymiar w semestrze:
  • Wykład45h
  • Ćwiczenia0h
  • Laboratorium15h
  • Projekt0h
  • Lekcje komputerowe0h
Wymagania wstępne:
Podstawy optyki (kurs fizyki), optomechatroniki i informatyki
Limit liczby studentów:
Cel przedmiotu:
Poznanie związków między dziedzinami fotoniki: optyką geometryczną, falową elektromagnetyczną i kwantową; podstaw teoretycznych tych dziedzin; ich miejsca w nauce i technice; przykładowych zastosowań w przyrządach optycznych i fotonicznych. Zapoznanie z praktyką numeryczną i laboratoryjną.
Treści kształcenia:
(W) Wprowadzenie. Optyka, elektronika i fotonika. Związki między głównymi dziedzinami fotoniki. Opisy światła. Postulaty skalarnego modelu optyki falowej. Funkcja falowa. Gęstość mocy. Promieniowanie koherentne: fale monochromatyczne – reprezentacja zespolona, fale elementarne i przyoosiowe. Interferencja. Opis teoretyczny interferencji dwuwiązkowej. Interferometryczne kodowanie i dekodowanie informacji z zastosowaniem jednej i dwóch długości fali. Podstawowe konfiguracje interferometrów. Interferometry z wiązką odniesienia i repliką wiązki przedmiotowej. Interferencja wielopromieniowa. Podstawy fizyczne. Interferometr Fabry-Perot’a ze źródłem rozciągłym i punktowym. Optyka cienkich warstw. Podstawy fizyczne. Pokrycia wielowarstwowe rozjaśniające i o wysokim współczynniku odbicia. Elementy światłodzielące, filtry interferencyjne, zwierciadła dichroiczne. Dyfrakcja światła. Dyfrakcja Fraunhofera i Fresnela. Optyczne przekształcenie Fouriera. Wybrane zastosowania – dyfrakcja na przedmiotach o symetrii kołowej i przestrzennie okresowych. Propagacja promieniowania przez układ optyczny w ujęciu falowym. Analiza falowa koherentnych układów optycznych. Transformacje fazowe i sygnałowe. Odwzorowanie w oświetleniu koherentnym. Odwzorowanie holograficzne. Statystyczne właściwości promieniowania: intensywność, koherencja czasowa i przestrzenna. Interferencja w świetle częściowo koherentnym. Pomiar stopnia koherencji. Odwzorowanie w oświetleniu częściowo koherentnym. Propagacja światła częściowo koherentnego. Obrazowanie w oświetleniu niekoherentnym. Kryteria zdolności rozdzielczej. Polaryzacja i optyka kryształów. Opis geometryczny i opisy macierzowe (Jonesa i Stokesa) polaryzacji światła i ich zastosowania. Analiza dowolnego stanu polaryzacji. Odbicie i załamanie na granicy dwóch ośrodków – wzory Fresnela Polaryzatory. Ośrodki anizotropowe. Przejście światła przez ośrodek anizotropowy. Elementy układów polaryzacyjnych: polaryzatory, płytki opóźniające, kompensatory. Interferometria w świetle spolaryzowanym. Elastooptyka. (L) Zajęcia wstępne; symulacje numeryczne podstawowych zjawisk interferencji, dyfrakcji i polaryza-cji. Badanie wybranych zagadnień dyfrakcji Fraunhofera. Zestawienie i justowanie laserowego układu formowania wiązki. Interferometry z podziałem amplitudy: Fizeau, Twymana-Greena, Macha-Zehndera i Sagnaca. Wybrane zagadnienia dyfrakcji Fresnela: zjawisko samoobrazowania i inter-ferometr Talbota. Achromatyzacja prążków interferencyjnych tworzonych za pomocą zwierciadła Lloyda. Polaryzacyjna metoda zmiany fazy w obrazach prążkowych
Metody oceny:
(W) Egzamin (L) Suma punktów za wejściówki, wykonanie ćwiczeń i przedstawienie sprawozdań
Egzamin:
Literatura:
R. Jóźwicki, Podstawy inżynierii fotonicznej, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2006 K. Gniadek, Optyczne przetwarzanie informacji, PWN, Warszawa 1992 K. Patorski, M. Kujawińska, L. Sałbut, Interferometria laserowa z automatyczną analizą obrazu, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2005 B.E.A. Saleh, M.C. Teich, Fundamentals of Photonics, Wiley & Sons, Inc. New York 1991 D. Goldstein, Polarized Light, Marcel Dekker, New York 2003
Witryna www przedmiotu:
Uwagi:

Efekty uczenia się